mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 09:41:26 -08:00
Issue 675 & 676: Adding life expectancy and DOE energy burden data (#683)
* Adding two new data sources.
This commit is contained in:
parent
fc5ed37fca
commit
e94d05882c
10 changed files with 240 additions and 26 deletions
|
@ -49,6 +49,16 @@ DATASET_LIST = [
|
|||
"module_dir": "census_acs_median_income",
|
||||
"class_name": "CensusACSMedianIncomeETL",
|
||||
},
|
||||
{
|
||||
"name": "cdc_life_expectancy",
|
||||
"module_dir": "cdc_life_expectancy",
|
||||
"class_name": "CDCLifeExpectancy",
|
||||
},
|
||||
{
|
||||
"name": "doe_energy_burden",
|
||||
"module_dir": "doe_energy_burden",
|
||||
"class_name": "DOEEnergyBurden",
|
||||
},
|
||||
]
|
||||
CENSUS_INFO = {
|
||||
"name": "census",
|
||||
|
|
|
@ -26,7 +26,9 @@ class ScoreETL(ExtractTransformLoad):
|
|||
# A few specific field names
|
||||
# TODO: clean this up, I name some fields but not others.
|
||||
self.UNEMPLOYED_FIELD_NAME: str = "Unemployed civilians (percent)"
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME: str = "Linguistic isolation (percent)"
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME: str = (
|
||||
"Linguistic isolation (percent)"
|
||||
)
|
||||
self.HOUSING_BURDEN_FIELD_NAME: str = "Housing burden (percent)"
|
||||
self.POVERTY_FIELD_NAME: str = (
|
||||
"Poverty (Less than 200% of federal poverty line)"
|
||||
|
@ -58,6 +60,12 @@ class ScoreETL(ExtractTransformLoad):
|
|||
"Percent of individuals < 200% Federal Poverty Line"
|
||||
)
|
||||
|
||||
# CDC life expectancy
|
||||
self.LIFE_EXPECTANCY_FIELD_NAME = "Life expectancy (years)"
|
||||
|
||||
# DOE energy burden
|
||||
self.ENERGY_BURDEN_FIELD_NAME = "Energy burden"
|
||||
|
||||
# There's another aggregation level (a second level of "buckets").
|
||||
self.AGGREGATION_POLLUTION: str = "Pollution Burden"
|
||||
self.AGGREGATION_POPULATION: str = "Population Characteristics"
|
||||
|
@ -75,6 +83,8 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.hud_housing_df: pd.DataFrame
|
||||
self.cdc_places_df: pd.DataFrame
|
||||
self.census_acs_median_incomes_df: pd.DataFrame
|
||||
self.cdc_life_expectancy_df: pd.DataFrame
|
||||
self.doe_energy_burden_df: pd.DataFrame
|
||||
|
||||
def data_sets(self) -> list:
|
||||
# Define a named tuple that will be used for each data set input.
|
||||
|
@ -166,6 +176,16 @@ class ScoreETL(ExtractTransformLoad):
|
|||
renamed_field=self.MEDIAN_INCOME_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
DataSet(
|
||||
input_field=self.LIFE_EXPECTANCY_FIELD_NAME,
|
||||
renamed_field=self.LIFE_EXPECTANCY_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
DataSet(
|
||||
input_field=self.ENERGY_BURDEN_FIELD_NAME,
|
||||
renamed_field=self.ENERGY_BURDEN_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
# The following data sets have buckets, because they're used in Score C
|
||||
DataSet(
|
||||
input_field="CANCER",
|
||||
|
@ -325,6 +345,26 @@ class ScoreETL(ExtractTransformLoad):
|
|||
low_memory=False,
|
||||
)
|
||||
|
||||
# Load CDC life expectancy data
|
||||
cdc_life_expectancy_csv = (
|
||||
self.DATA_PATH / "dataset" / "cdc_life_expectancy" / "usa.csv"
|
||||
)
|
||||
self.cdc_life_expectancy_df = pd.read_csv(
|
||||
cdc_life_expectancy_csv,
|
||||
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
# Load DOE energy burden data
|
||||
doe_energy_burden_csv = (
|
||||
self.DATA_PATH / "dataset" / "doe_energy_burden" / "usa.csv"
|
||||
)
|
||||
self.doe_energy_burden_df = pd.read_csv(
|
||||
doe_energy_burden_csv,
|
||||
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def _join_cbg_dfs(self, census_block_group_dfs: list) -> pd.DataFrame:
|
||||
logger.info("Joining Census Block Group dataframes")
|
||||
census_block_group_df = functools.reduce(
|
||||
|
@ -566,21 +606,9 @@ class ScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
df["Score H"] = df["Score H (communities)"].astype(int)
|
||||
|
||||
# df["80% AMI & 6% high school (communities)"] = (
|
||||
# (df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
# & (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
# )
|
||||
#
|
||||
# df["FPL200>40% & 6% high school (communities)"] = (
|
||||
# (df[self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME] > 0.40)
|
||||
# & (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
# )
|
||||
|
||||
df["NMTC (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
) | (
|
||||
(df[self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME] > 0.20)
|
||||
)
|
||||
) | (df[self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME] > 0.20)
|
||||
|
||||
df["NMTC modified (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
|
@ -609,6 +637,8 @@ class ScoreETL(ExtractTransformLoad):
|
|||
census_tract_dfs = [
|
||||
self.hud_housing_df,
|
||||
self.cdc_places_df,
|
||||
self.cdc_life_expectancy_df,
|
||||
self.doe_energy_burden_df
|
||||
]
|
||||
census_tract_df = self._join_tract_dfs(census_tract_dfs)
|
||||
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import get_module_logger, download_file_from_url
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class CDCLifeExpectancy(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/US_A.CSV"
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH / "dataset" / "cdc_life_expectancy"
|
||||
)
|
||||
|
||||
self.TRACT_INPUT_COLUMN_NAME = "Tract ID"
|
||||
self.LIFE_EXPECTANCY_FIELD_NAME = "Life expectancy (years)"
|
||||
|
||||
# Constants for output
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.LIFE_EXPECTANCY_FIELD_NAME,
|
||||
]
|
||||
|
||||
self.raw_df: pd.DataFrame
|
||||
self.output_df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting data download.")
|
||||
|
||||
download_file_name = self.TMP_PATH / "cdc_life_expectancy" / "usa.csv"
|
||||
download_file_from_url(
|
||||
file_url=self.FILE_URL,
|
||||
download_file_name=download_file_name,
|
||||
verify=True,
|
||||
)
|
||||
|
||||
self.raw_df = pd.read_csv(
|
||||
filepath_or_buffer=download_file_name,
|
||||
dtype={
|
||||
# The following need to remain as strings for all of their digits, not get converted to numbers.
|
||||
self.TRACT_INPUT_COLUMN_NAME: "string",
|
||||
},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting DOE energy burden transform.")
|
||||
|
||||
self.output_df = self.raw_df.rename(
|
||||
columns={
|
||||
"e(0)": self.LIFE_EXPECTANCY_FIELD_NAME,
|
||||
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
}
|
||||
)
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating CDC Life Expectancy Data")
|
||||
|
||||
pass
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving CDC Life Expectancy CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.output_df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
|
@ -100,7 +100,9 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
]
|
||||
|
||||
# Handle null values for CBG median income, which are `-666666666`.
|
||||
missing_value_count = sum(self.df[self.MEDIAN_INCOME_FIELD_NAME]==-666666666)
|
||||
missing_value_count = sum(
|
||||
self.df[self.MEDIAN_INCOME_FIELD_NAME] == -666666666
|
||||
)
|
||||
logger.info(
|
||||
f"There are {missing_value_count} ({int(100*missing_value_count/self.df[self.MEDIAN_INCOME_FIELD_NAME].count())}%) values of "
|
||||
+ f"`{self.MEDIAN_INCOME_FIELD_NAME}` being marked as null values."
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import get_module_logger, unzip_file_from_url
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class DOEEnergyBurden(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.DOE_FILE_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/DOE_LEAD_with_EJSCREEN.csv.zip"
|
||||
)
|
||||
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH / "dataset" / "doe_energy_burden"
|
||||
)
|
||||
|
||||
self.TRACT_INPUT_COLUMN_NAME = "GEOID"
|
||||
self.ENERGY_BURDEN_FIELD_NAME = "Energy burden"
|
||||
|
||||
# Constants for output
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.ENERGY_BURDEN_FIELD_NAME,
|
||||
]
|
||||
|
||||
self.raw_df: pd.DataFrame
|
||||
self.output_df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting data download.")
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=self.DOE_FILE_URL,
|
||||
download_path=self.TMP_PATH,
|
||||
unzipped_file_path=self.TMP_PATH / "doe_energy_burden",
|
||||
)
|
||||
|
||||
self.raw_df = pd.read_csv(
|
||||
filepath_or_buffer=self.TMP_PATH
|
||||
/ "doe_energy_burden"
|
||||
/ "DOE_LEAD_with_EJSCREEN.csv",
|
||||
# The following need to remain as strings for all of their digits, not get converted to numbers.
|
||||
dtype={
|
||||
self.TRACT_INPUT_COLUMN_NAME: "string",
|
||||
},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
|
||||
output_df = self.raw_df.rename(
|
||||
columns={
|
||||
"AvgEnergyBurden": self.ENERGY_BURDEN_FIELD_NAME,
|
||||
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
}
|
||||
)
|
||||
|
||||
# Convert energy burden to a fraction, since we represent all other percentages as fractions.
|
||||
output_df[self.ENERGY_BURDEN_FIELD_NAME] = output_df[self.ENERGY_BURDEN_FIELD_NAME] / 100
|
||||
|
||||
# Left-pad the tracts with 0s
|
||||
expected_length_of_census_tract_field = 11
|
||||
output_df[self.GEOID_TRACT_FIELD_NAME] = output_df[self.GEOID_TRACT_FIELD_NAME].astype(str).apply(
|
||||
lambda x: x.zfill(expected_length_of_census_tract_field)
|
||||
)
|
||||
|
||||
self.output_df = output_df
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating DOE Energy Burden Data")
|
||||
|
||||
pass
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving DOE Energy Burden CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.output_df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
|
@ -111,15 +111,29 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d9968187",
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Analyze one field at a time (useful for setting thresholds)\n",
|
||||
"field = \"Percent of individuals < 200% Federal Poverty Line\"\n",
|
||||
"print(cejst_df[field].describe())\n",
|
||||
"quantile = .8\n",
|
||||
"print(f\"Quantile at {quantile} is {np.nanquantile(a=cejst_df[field], q=quantile)}\")\n",
|
||||
"cejst_df[field].hist()"
|
||||
"\n",
|
||||
"quantile = 0.8\n",
|
||||
"\n",
|
||||
"for field in [\n",
|
||||
" \"Percent of individuals < 200% Federal Poverty Line\",\n",
|
||||
" \"Life expectancy (years)\",\n",
|
||||
" \"Energy burden\",\n",
|
||||
"]:\n",
|
||||
" print(f\"\\n~~~~Analysis for field `{field}`~~~~\")\n",
|
||||
" print(cejst_df[field].describe())\n",
|
||||
" print(\n",
|
||||
" f\"\\nThere are {cejst_df[field].isnull().sum() * 100 / len(cejst_df):.2f}% of values missing.\"\n",
|
||||
" )\n",
|
||||
" print(\n",
|
||||
" f\"\\nQuantile at {quantile} is {np.nanquantile(a=cejst_df[field], q=quantile)}\"\n",
|
||||
" )\n",
|
||||
" print(cejst_df[field].hist())"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -242,7 +256,7 @@
|
|||
" \"priority_communities_field\",\n",
|
||||
" # Note: this field only used by indices defined at the census tract level.\n",
|
||||
" \"other_census_tract_fields_to_keep\",\n",
|
||||
" ]\n",
|
||||
" ],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Define the indices used for CEJST scoring (`census_block_group_indices`) as well as comparison\n",
|
||||
|
@ -287,11 +301,12 @@
|
|||
" method_name=\"Score D (25th percentile)\",\n",
|
||||
" priority_communities_field=\"Score D (top 25th percentile)\",\n",
|
||||
" other_census_tract_fields_to_keep=[],\n",
|
||||
" ),\n",
|
||||
" Index(\n",
|
||||
" method_name=\"Poverty\",\n",
|
||||
" priority_communities_field=\"Poverty (Less than 200% of federal poverty line) (top 25th percentile)\",\n",
|
||||
" other_census_tract_fields_to_keep=[],\n",
|
||||
" )\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"census_tract_indices = [\n",
|
||||
|
@ -590,7 +605,7 @@
|
|||
" ],\n",
|
||||
" dropna=False,\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" # Run the comparison function on the groups.\n",
|
||||
" comparison_df = grouped_df.mean().reset_index()\n",
|
||||
"\n",
|
||||
|
@ -638,7 +653,9 @@
|
|||
" worksheet.set_column(f\"{column_character}:{column_character}\", column_width)\n",
|
||||
"\n",
|
||||
" # Add green to red conditional formatting.\n",
|
||||
" column_ranges = f\"{column_character}2:{column_character}{len(cbg_score_comparison_df)+1}\"\n",
|
||||
" column_ranges = (\n",
|
||||
" f\"{column_character}2:{column_character}{len(cbg_score_comparison_df)+1}\"\n",
|
||||
" )\n",
|
||||
" worksheet.conditional_format(\n",
|
||||
" column_ranges,\n",
|
||||
" # Min: green, max: red.\n",
|
||||
|
@ -695,7 +712,7 @@
|
|||
" output_dir.mkdir(parents=True, exist_ok=True)\n",
|
||||
" file_path = output_dir / (file_name_part + \".csv\")\n",
|
||||
" file_path_xlsx = output_dir / (file_name_part + \".xlsx\")\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" cbg_score_comparison_df.to_csv(\n",
|
||||
" path_or_buf=file_path,\n",
|
||||
" na_rep=\"\",\n",
|
||||
|
|
Loading…
Add table
Reference in a new issue