From e695e7a43df01bfa0843d2d32f15a5022d14a712 Mon Sep 17 00:00:00 2001 From: lucasmbrown-usds Date: Sun, 5 Dec 2021 21:04:12 -0500 Subject: [PATCH] adding reading --- .../data_pipeline/score/score_l.py | 29 +++++++++++++++++-- 1 file changed, 26 insertions(+), 3 deletions(-) diff --git a/data/data-pipeline/data_pipeline/score/score_l.py b/data/data-pipeline/data_pipeline/score/score_l.py index ffb90df5..c24f43da 100644 --- a/data/data-pipeline/data_pipeline/score/score_l.py +++ b/data/data-pipeline/data_pipeline/score/score_l.py @@ -251,9 +251,7 @@ class ScoreL(Score): & self.df[field_names.FPL_200_SERIES] ) - self.df[ - field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD - ] = ( + self.df[field_names.IMPENETRABLE_SURFACES_LOW_INCOME_FIELD] = ( impenetrable_surfaces_threshold & self.df[field_names.FPL_200_SERIES] ) @@ -522,6 +520,15 @@ class ScoreL(Score): >= self.ENVIRONMENTAL_BURDEN_THRESHOLD ) + life_expectancy_threshold = ( + self.df[ + field_names.LIFE_EXPECTANCY_FIELD + + field_names.PERCENTILE_FIELD_SUFFIX + ] + # Note: a high life expectancy is good, so take 1 minus the threshold to invert it, + # and then look for life expenctancies lower than that (not greater than). + <= 1 - self.ENVIRONMENTAL_BURDEN_THRESHOLD + ) self.df[field_names.DIABETES_LOW_INCOME_FIELD] = ( diabetes_threshold & self.df[field_names.FPL_200_SERIES] @@ -565,6 +572,15 @@ class ScoreL(Score): field_names.LOW_MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD, ] + # Workforce criteria for states fields. + workforce_eligibility_columns = [ + field_names.UNEMPLOYMENT_LOW_HS_EDUCATION_FIELD, + field_names.POVERTY_LOW_HS_EDUCATION_FIELD, + field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD, + field_names.MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD, + field_names.READING_LOW_HS_EDUCATION_FIELD, + ] + high_scool_achievement_rate_threshold = ( self.df[field_names.HIGH_SCHOOL_ED_FIELD] >= self.LACK_OF_HIGH_SCHOOL_MINIMUM_THRESHOLD @@ -602,6 +618,13 @@ class ScoreL(Score): >= self.ENVIRONMENTAL_BURDEN_THRESHOLD ) + reading_threshold = ( + self.df[ + field_names.READING_FIELD + field_names.PERCENTILE_FIELD_SUFFIX + ] + >= self.ENVIRONMENTAL_BURDEN_THRESHOLD + ) + self.df[field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD] = ( linguistic_isolation_threshold & high_scool_achievement_rate_threshold