Add FUDS ETL (#1817)

* Add spatial join method (#1871)

Since we'll need to figure out the tracts for a large number of points
in future tickets, add a utility to handle grabbing the tract geometries
and adding tract data to a point dataset.

* Add FUDS, also jupyter lab (#1871)

* Add YAML configs for FUDS (#1871)

* Allow input geoid to be optional (#1871)

* Add FUDS ETL, tests, test-datae noteobook (#1871)

This adds the ETL class for Formerly Used Defense Sites (FUDS). This is
different from most other ETLs since these FUDS are not provided by
tract, but instead by geographic point, so we need to assign FUDS to
tracts and then do calculations from there.

* Floats -> Ints, as I intended (#1871)

* Floats -> Ints, as I intended (#1871)

* Formatting fixes (#1871)

* Add test false positive GEOIDs (#1871)

* Add gdal binaries (#1871)

* Refactor pandas code to be more idiomatic (#1871)

Per Emma, the more pandas-y way of doing my counts is using np.where to
add the values i need, then groupby and size. It is definitely more
compact, and also I think more correct!

* Update configs per Emma suggestions (#1871)

* Type fixed! (#1871)

* Remove spurious import from vscode (#1871)

* Snapshot update after changing col name (#1871)

* Move up GDAL (#1871)

* Adjust geojson strategy (#1871)

* Try running census separately first (#1871)

* Fix import order (#1871)

* Cleanup cache strategy (#1871)

* Download census data from S3 instead of re-calculating (#1871)

* Clarify pandas code per Emma (#1871)
This commit is contained in:
Matt Bowen 2022-08-16 13:28:39 -04:00 committed by GitHub
commit d5fbb802e8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
22 changed files with 2534 additions and 416 deletions

View file

@ -0,0 +1,10 @@
{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "STATEFP10": "06", "COUNTYFP10": "037", "TRACTCE10": "207400", "GEOID10_TRACT": "06037207400", "NAME10": "2074", "NAMELSAD10": "Census Tract 2074", "MTFCC10": "G5020", "FUNCSTAT10": "S", "ALAND10": 862884, "AWATER10": 6531, "INTPTLAT10": "+34.0561941", "INTPTLON10": "-118.2466502" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ -118.25165, 34.057561 ], [ -118.251856, 34.057693 ], [ -118.251973, 34.057769 ], [ -118.253069, 34.058478 ], [ -118.253333, 34.058635 ], [ -118.253175, 34.058788 ], [ -118.252985, 34.058967 ], [ -118.252934, 34.059012 ], [ -118.252592, 34.059315 ], [ -118.252391, 34.059485 ], [ -118.252131, 34.059695 ], [ -118.251474, 34.060224 ], [ -118.251082, 34.060543 ], [ -118.250554, 34.060988 ], [ -118.249996, 34.061475 ], [ -118.248871, 34.06247 ], [ -118.248822, 34.062513 ], [ -118.248754, 34.062434 ], [ -118.247476, 34.060942 ], [ -118.247368, 34.060818 ], [ -118.247013, 34.06041 ], [ -118.24698, 34.060373 ], [ -118.246769, 34.060147 ], [ -118.246548, 34.059926 ], [ -118.246318, 34.059712 ], [ -118.246079, 34.059505 ], [ -118.245633, 34.059146 ], [ -118.245532, 34.059066 ], [ -118.245262, 34.058851 ], [ -118.244952, 34.058609 ], [ -118.244638, 34.05837 ], [ -118.244425, 34.058215 ], [ -118.244007, 34.057917 ], [ -118.243393, 34.057507 ], [ -118.243099, 34.057319 ], [ -118.24245, 34.056913 ], [ -118.241377, 34.056241 ], [ -118.241204, 34.056133 ], [ -118.240288, 34.055562 ], [ -118.239443, 34.055035 ], [ -118.238512, 34.054454 ], [ -118.238227, 34.054289 ], [ -118.238023, 34.054178 ], [ -118.237887, 34.054108 ], [ -118.2379, 34.054002 ], [ -118.237936, 34.053725 ], [ -118.237945, 34.053651 ], [ -118.237976, 34.052819 ], [ -118.238039, 34.05107 ], [ -118.239698, 34.052451 ], [ -118.239867, 34.051906 ], [ -118.240115, 34.0514 ], [ -118.240172, 34.051284 ], [ -118.240271, 34.051083 ], [ -118.240856, 34.050405 ], [ -118.242151, 34.051344 ], [ -118.242382, 34.051511 ], [ -118.24334, 34.050273 ], [ -118.244519, 34.051003 ], [ -118.245067, 34.051354 ], [ -118.245606, 34.051703 ], [ -118.246677, 34.052395 ], [ -118.247754, 34.053091 ], [ -118.248466, 34.053552 ], [ -118.248818, 34.05378 ], [ -118.249888, 34.054472 ], [ -118.25095, 34.055158 ], [ -118.251081, 34.055241 ], [ -118.250895, 34.055373 ], [ -118.250712, 34.05553 ], [ -118.250052, 34.056232 ], [ -118.249838, 34.056391 ], [ -118.25165, 34.057561 ] ] ] } },
{ "type": "Feature", "properties": { "STATEFP10": "13", "COUNTYFP10": "121", "TRACTCE10": "011900", "GEOID10_TRACT": "13121011900", "NAME10": "119", "NAMELSAD10": "Census Tract 119", "MTFCC10": "G5020", "FUNCSTAT10": "S", "ALAND10": 1530847, "AWATER10": 0, "INTPTLAT10": "+33.7539369", "INTPTLON10": "-084.3826910" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ -84.393243, 33.754604 ], [ -84.393434, 33.754711 ], [ -84.393836, 33.75492 ], [ -84.39376, 33.755141 ], [ -84.394037, 33.756265 ], [ -84.394411, 33.757235 ], [ -84.394982, 33.758491 ], [ -84.394325, 33.758955 ], [ -84.393831, 33.759308 ], [ -84.393459, 33.759573 ], [ -84.393366, 33.759627 ], [ -84.393273, 33.759663 ], [ -84.393187, 33.759685 ], [ -84.392783, 33.75973 ], [ -84.392071, 33.759729 ], [ -84.390564, 33.759722 ], [ -84.389801, 33.759719 ], [ -84.389083, 33.759716 ], [ -84.387584, 33.759709 ], [ -84.387539, 33.759708 ], [ -84.386062, 33.759685 ], [ -84.384198, 33.759666 ], [ -84.38422, 33.758392 ], [ -84.384242, 33.757117 ], [ -84.384268, 33.755571 ], [ -84.384283, 33.75473 ], [ -84.384287, 33.754521 ], [ -84.384305, 33.754462 ], [ -84.382272, 33.754439 ], [ -84.381907, 33.754434 ], [ -84.380277, 33.754417 ], [ -84.3802, 33.754414 ], [ -84.379455, 33.754397 ], [ -84.379157, 33.75439 ], [ -84.378673, 33.754379 ], [ -84.378332, 33.75438 ], [ -84.378297, 33.75437 ], [ -84.378044, 33.754368 ], [ -84.377363, 33.754378 ], [ -84.377298, 33.754379 ], [ -84.377099, 33.754376 ], [ -84.376604, 33.754371 ], [ -84.375544, 33.754355 ], [ -84.374384, 33.754337 ], [ -84.37336, 33.754322 ], [ -84.372422, 33.754309 ], [ -84.37215, 33.754305 ], [ -84.371286, 33.754295 ], [ -84.369769, 33.754278 ], [ -84.368828, 33.754282 ], [ -84.368562, 33.754283 ], [ -84.368027, 33.754285 ], [ -84.367498, 33.754287 ], [ -84.366551, 33.75429 ], [ -84.366444, 33.754291 ], [ -84.365863, 33.754297 ], [ -84.365599, 33.754312 ], [ -84.365617, 33.754242 ], [ -84.365791, 33.753851 ], [ -84.366268, 33.75328 ], [ -84.366323, 33.753215 ], [ -84.3666, 33.752984 ], [ -84.366842, 33.752754 ], [ -84.366935, 33.752666 ], [ -84.36698, 33.752629 ], [ -84.367086, 33.752523 ], [ -84.367248, 33.75237 ], [ -84.368362, 33.752078 ], [ -84.369133, 33.751836 ], [ -84.369871, 33.751612 ], [ -84.370491, 33.751434 ], [ -84.370976, 33.751284 ], [ -84.37217, 33.750916 ], [ -84.373348, 33.750533 ], [ -84.374128, 33.750253 ], [ -84.375093, 33.749926 ], [ -84.376294, 33.749564 ], [ -84.376636, 33.749461 ], [ -84.376945, 33.749372 ], [ -84.37768, 33.749186 ], [ -84.378404, 33.74904 ], [ -84.378835, 33.748964 ], [ -84.379047, 33.748935 ], [ -84.379541, 33.748892 ], [ -84.379663, 33.748881 ], [ -84.380133, 33.748853 ], [ -84.380525, 33.748853 ], [ -84.380758, 33.748868 ], [ -84.381016, 33.748884 ], [ -84.381506, 33.748923 ], [ -84.382132, 33.748903 ], [ -84.38251, 33.748886 ], [ -84.382727, 33.748877 ], [ -84.383153, 33.748907 ], [ -84.383313, 33.748923 ], [ -84.383493, 33.748941 ], [ -84.383746, 33.749 ], [ -84.383896, 33.749035 ], [ -84.384064, 33.749089 ], [ -84.384277, 33.749158 ], [ -84.384328, 33.74918 ], [ -84.384564, 33.749282 ], [ -84.38487, 33.749449 ], [ -84.385214, 33.749686 ], [ -84.385654, 33.749989 ], [ -84.386389, 33.750471 ], [ -84.387563, 33.75124 ], [ -84.387886, 33.751452 ], [ -84.388865, 33.752093 ], [ -84.389895, 33.752768 ], [ -84.390844, 33.753391 ], [ -84.39132, 33.753703 ], [ -84.391525, 33.753837 ], [ -84.392156, 33.754065 ], [ -84.392373, 33.754172 ], [ -84.392834, 33.754399 ], [ -84.39318, 33.754569 ], [ -84.393243, 33.754604 ] ] ] } },
{ "type": "Feature", "properties": { "STATEFP10": "25", "COUNTYFP10": "025", "TRACTCE10": "030300", "GEOID10_TRACT": "25025030300", "NAME10": "303", "NAMELSAD10": "Census Tract 303", "MTFCC10": "G5020", "FUNCSTAT10": "S", "ALAND10": 691377, "AWATER10": 234496, "INTPTLAT10": "+42.3600562", "INTPTLON10": "-071.0532861" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ -71.045566, 42.359733 ], [ -71.049073, 42.354939 ], [ -71.049333, 42.354585 ], [ -71.049396, 42.354498 ], [ -71.049595, 42.354497 ], [ -71.050434, 42.354846 ], [ -71.050471, 42.354898 ], [ -71.050892, 42.35506 ], [ -71.05106, 42.355131 ], [ -71.050981, 42.355309 ], [ -71.050889, 42.355475 ], [ -71.050856, 42.355555 ], [ -71.050762, 42.356011 ], [ -71.050749, 42.356124 ], [ -71.050816, 42.35664 ], [ -71.051009, 42.356937 ], [ -71.051198, 42.357241 ], [ -71.05137, 42.357474 ], [ -71.051411, 42.357539 ], [ -71.051508, 42.357692 ], [ -71.051613, 42.357921 ], [ -71.051784, 42.358295 ], [ -71.051941, 42.358637 ], [ -71.051976, 42.358699 ], [ -71.052005, 42.358693 ], [ -71.052065, 42.358682 ], [ -71.052158, 42.358666 ], [ -71.052294, 42.358646 ], [ -71.052749, 42.358576 ], [ -71.053192, 42.358496 ], [ -71.053248, 42.358478 ], [ -71.053321, 42.358455 ], [ -71.053518, 42.358356 ], [ -71.053765, 42.358183 ], [ -71.053961, 42.358012 ], [ -71.054265, 42.357737 ], [ -71.05437, 42.357662 ], [ -71.054524, 42.357551 ], [ -71.054848, 42.35735 ], [ -71.05502, 42.357245 ], [ -71.05519, 42.357143 ], [ -71.055539, 42.356971 ], [ -71.055759, 42.356913 ], [ -71.056292, 42.356874 ], [ -71.05659, 42.356852 ], [ -71.057191, 42.356822 ], [ -71.05771, 42.356777 ], [ -71.057993, 42.356789 ], [ -71.058235, 42.356832 ], [ -71.058737, 42.356988 ], [ -71.058561, 42.357161 ], [ -71.05829, 42.35741 ], [ -71.058759, 42.357577 ], [ -71.059299, 42.357766 ], [ -71.059613, 42.357863 ], [ -71.060354, 42.358092 ], [ -71.061259, 42.358283 ], [ -71.06151, 42.358336 ], [ -71.061714, 42.358318 ], [ -71.061977, 42.358246 ], [ -71.062375, 42.358095 ], [ -71.062642, 42.357977 ], [ -71.062727, 42.358311 ], [ -71.062817, 42.358665 ], [ -71.062823, 42.358714 ], [ -71.062846, 42.358889 ], [ -71.062862, 42.359204 ], [ -71.062875, 42.359483 ], [ -71.062864, 42.36009 ], [ -71.062911, 42.361229 ], [ -71.062762, 42.361642 ], [ -71.062626, 42.361842 ], [ -71.062499, 42.362001 ], [ -71.062354, 42.362143 ], [ -71.062268, 42.362205 ], [ -71.062195, 42.362258 ], [ -71.061856, 42.36243 ], [ -71.061669, 42.362493 ], [ -71.061223, 42.362633 ], [ -71.060878, 42.362731 ], [ -71.060042, 42.362967 ], [ -71.059606, 42.36307 ], [ -71.059491, 42.363104 ], [ -71.058769, 42.363318 ], [ -71.058559, 42.363381 ], [ -71.0584, 42.363412 ], [ -71.058216, 42.363431 ], [ -71.058037, 42.363481 ], [ -71.057979, 42.363511 ], [ -71.057882, 42.363546 ], [ -71.057776, 42.363542 ], [ -71.057709, 42.363543 ], [ -71.05757, 42.36342 ], [ -71.057332, 42.36318 ], [ -71.057051, 42.362987 ], [ -71.056227, 42.362386 ], [ -71.056176, 42.362357 ], [ -71.05525, 42.36183 ], [ -71.055228, 42.361869 ], [ -71.055183, 42.361919 ], [ -71.055187, 42.361941 ], [ -71.055159, 42.361989 ], [ -71.055123, 42.362045 ], [ -71.055026, 42.362149 ], [ -71.05489, 42.362265 ], [ -71.054661, 42.36238 ], [ -71.054626, 42.362404 ], [ -71.054581, 42.362434 ], [ -71.054494, 42.362511 ], [ -71.054407, 42.362634 ], [ -71.054311, 42.362802 ], [ -71.054296, 42.36283 ], [ -71.05419, 42.362973 ], [ -71.054061, 42.363108 ], [ -71.053826, 42.363303 ], [ -71.053709, 42.363367 ], [ -71.053585, 42.363405 ], [ -71.053549, 42.363416 ], [ -71.053199, 42.363474 ], [ -71.053043, 42.363495 ], [ -71.052769, 42.36353 ], [ -71.05246, 42.363586 ], [ -71.05224, 42.363626 ], [ -71.052061, 42.36371 ], [ -71.051895, 42.363501 ], [ -71.051661, 42.363192 ], [ -71.051647, 42.36311 ], [ -71.051414, 42.363386 ], [ -71.05135, 42.36347 ], [ -71.051195, 42.36372 ], [ -71.051115, 42.363979 ], [ -71.051088, 42.364065 ], [ -71.05109, 42.364175 ], [ -71.0496, 42.364044 ], [ -71.049409, 42.364045 ], [ -71.046389, 42.363935 ], [ -71.045985, 42.362294 ], [ -71.045918, 42.361164 ], [ -71.0455, 42.359825 ], [ -71.045566, 42.359733 ] ] ] } },
{ "type": "Feature", "properties": { "STATEFP10": "28", "COUNTYFP10": "047", "TRACTCE10": "003800", "GEOID10_TRACT": "28047003800", "NAME10": "38", "NAMELSAD10": "Census Tract 38", "MTFCC10": "G5020", "FUNCSTAT10": "S", "ALAND10": 2304789, "AWATER10": 3104014, "INTPTLAT10": "+30.3577592", "INTPTLON10": "-089.1130708" }, "geometry": { "type": "Polygon", "coordinates": [ [ [ -89.101237, 30.347697 ], [ -89.117538, 30.342797 ], [ -89.124278, 30.343971 ], [ -89.124335, 30.353194 ], [ -89.124336, 30.353446 ], [ -89.124338, 30.353697 ], [ -89.124555, 30.354007 ], [ -89.124595, 30.353991 ], [ -89.124991, 30.354701 ], [ -89.125114, 30.354921 ], [ -89.125679, 30.355921 ], [ -89.127359, 30.358407 ], [ -89.127508, 30.358574 ], [ -89.127077, 30.35871 ], [ -89.124073, 30.359753 ], [ -89.12318, 30.360048 ], [ -89.122255, 30.360367 ], [ -89.121353, 30.360674 ], [ -89.120354, 30.36101 ], [ -89.117854, 30.36182 ], [ -89.116359, 30.362304 ], [ -89.11492, 30.362785 ], [ -89.113579, 30.363225 ], [ -89.112509, 30.363583 ], [ -89.11135, 30.363984 ], [ -89.11121, 30.364005 ], [ -89.110283, 30.364326 ], [ -89.109295, 30.364647 ], [ -89.108217, 30.365012 ], [ -89.107137, 30.365376 ], [ -89.105342, 30.365959 ], [ -89.102779, 30.36682 ], [ -89.101505, 30.367176 ], [ -89.100242, 30.367636 ], [ -89.098984, 30.368 ], [ -89.097738, 30.368327 ], [ -89.097572, 30.368365 ], [ -89.096742, 30.368555 ], [ -89.096574, 30.368614 ], [ -89.095317, 30.368959 ], [ -89.095334, 30.371183 ], [ -89.095338, 30.371317 ], [ -89.093988, 30.371319 ], [ -89.09397, 30.371327 ], [ -89.093034, 30.371329 ], [ -89.092869, 30.371322 ], [ -89.09153, 30.371326 ], [ -89.090312, 30.371327 ], [ -89.090136, 30.371327 ], [ -89.088809, 30.371327 ], [ -89.088797, 30.372373 ], [ -89.087557, 30.372377 ], [ -89.087432, 30.372371 ], [ -89.087429, 30.371074 ], [ -89.087429, 30.370979 ], [ -89.087431, 30.36924 ], [ -89.087424, 30.368559 ], [ -89.087394, 30.368228 ], [ -89.087398, 30.3681 ], [ -89.087408, 30.367653 ], [ -89.087405, 30.367552 ], [ -89.088805, 30.367086 ], [ -89.090137, 30.366643 ], [ -89.090263, 30.366603 ], [ -89.091459, 30.366215 ], [ -89.092643, 30.365831 ], [ -89.092912, 30.365758 ], [ -89.093006, 30.365732 ], [ -89.093168, 30.365712 ], [ -89.094308, 30.36534 ], [ -89.094388, 30.365301 ], [ -89.094683, 30.365183 ], [ -89.094739, 30.365156 ], [ -89.094852, 30.365118 ], [ -89.095644, 30.364853 ], [ -89.096427, 30.364604 ], [ -89.096534, 30.364567 ], [ -89.097512, 30.364275 ], [ -89.097679, 30.364234 ], [ -89.098915, 30.363843 ], [ -89.10016, 30.363411 ], [ -89.100979, 30.363155 ], [ -89.101422, 30.362993 ], [ -89.101423, 30.362631 ], [ -89.101426, 30.36174 ], [ -89.101417, 30.361088 ], [ -89.101237, 30.347697 ] ] ] } }
]
}

View file

@ -0,0 +1,28 @@
from pathlib import Path
from collections import namedtuple
import geopandas as gpd
from data_pipeline.etl.sources.geo_utils import add_tracts_for_geometries
def test_add_tracts_for_geometries():
field_names = ["latitude", "longitude", "expected_geoid"]
DataPoint = namedtuple("DataPoint", field_names)
# Pulled the tract IDs from the census geocoder
records = [
DataPoint(33.75649254612824, -84.39215035031984, "13121011900"),
DataPoint(34.05289139656212, -118.2402117966315, "06037207400"),
DataPoint(42.357500146415475, -71.0563146836545, "25025030300"),
DataPoint(30.368185144529168, -89.0930992763473, "28047003800"),
]
df = gpd.GeoDataFrame.from_records(records, columns=field_names)
df = gpd.GeoDataFrame(
df,
geometry=gpd.points_from_xy(
x=df["longitude"],
y=df["latitude"],
),
crs="epsg:4326",
)
tract_data = Path(__file__).parent / "data" / "us.geojson"
enriched_df = add_tracts_for_geometries(df, _tract_data_path=tract_data)
assert (df["expected_geoid"] == enriched_df["GEOID10_TRACT"]).all()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,16 @@
GEOID10_TRACT,Count of eligible Formerly Used Defense Site (FUDS) properties centroids,Count of ineligible Formerly Used Defense Site (FUDS) properties centroids,Is there at least one Formerly Used Defense Site (FUDS) in the tract?
06027000800,3,14,True
06061021322,1,2,True
06069000802,1,0,True
15001021010,1,2,True
15001021101,0,1,False
15001021402,1,2,True
15001021800,1,2,True
15003010201,2,1,True
15007040603,0,2,False
15007040604,1,2,True
15007040700,1,2,True
15009030100,0,1,False
15009030201,1,2,True
15009030402,1,2,True
15009030800,1,2,True
1 GEOID10_TRACT Count of eligible Formerly Used Defense Site (FUDS) properties centroids Count of ineligible Formerly Used Defense Site (FUDS) properties centroids Is there at least one Formerly Used Defense Site (FUDS) in the tract?
2 06027000800 3 14 True
3 06061021322 1 2 True
4 06069000802 1 0 True
5 15001021010 1 2 True
6 15001021101 0 1 False
7 15001021402 1 2 True
8 15001021800 1 2 True
9 15003010201 2 1 True
10 15007040603 0 2 False
11 15007040604 1 2 True
12 15007040700 1 2 True
13 15009030100 0 1 False
14 15009030201 1 2 True
15 15009030402 1 2 True
16 15009030800 1 2 True

View file

@ -0,0 +1,16 @@
GEOID10_TRACT,Count of eligible Formerly Used Defense Site (FUDS) properties centroids,Count of ineligible Formerly Used Defense Site (FUDS) properties centroids,Is there at least one Formerly Used Defense Site (FUDS) in the tract?
06027000800,3,14,True
06061021322,1,2,True
06069000802,1,0,True
15001021010,1,2,True
15001021101,0,1,False
15001021402,1,2,True
15001021800,1,2,True
15003010201,2,1,True
15007040603,0,2,False
15007040604,1,2,True
15007040700,1,2,True
15009030100,0,1,False
15009030201,1,2,True
15009030402,1,2,True
15009030800,1,2,True
1 GEOID10_TRACT Count of eligible Formerly Used Defense Site (FUDS) properties centroids Count of ineligible Formerly Used Defense Site (FUDS) properties centroids Is there at least one Formerly Used Defense Site (FUDS) in the tract?
2 06027000800 3 14 True
3 06061021322 1 2 True
4 06069000802 1 0 True
5 15001021010 1 2 True
6 15001021101 0 1 False
7 15001021402 1 2 True
8 15001021800 1 2 True
9 15003010201 2 1 True
10 15007040603 0 2 False
11 15007040604 1 2 True
12 15007040700 1 2 True
13 15009030100 0 1 False
14 15009030201 1 2 True
15 15009030402 1 2 True
16 15009030800 1 2 True

View file

@ -0,0 +1,187 @@
# pylint: disable=protected-access
from unittest import mock
import pathlib
from data_pipeline.etl.base import ValidGeoLevel
from data_pipeline.etl.sources.us_army_fuds.etl import (
USArmyFUDS,
)
from data_pipeline.tests.sources.example.test_etl import TestETL
from data_pipeline.utils import get_module_logger
logger = get_module_logger(__name__)
def _fake_add_tracts_for_geometries(df):
"""The actual geojoin is too slow for tests. Use precomputed results."""
lookups = {
(-121.39361572299998, 38.87463378900003): "06061021322",
(-121.40020751999998, 38.897583008000026): "06061021322",
(-121.40020751999998, 38.75158691400003): "06061021322",
(-157.84301757799997, 21.53619384800004): "15003010201",
(-157.85168456999997, 21.553405762000068): "15003010201",
(-157.90679931599996, 21.554199219000054): "15003010201",
(-159.52191162099996, 21.976623535000044): "15007040700",
(-159.52996826199998, 21.93762207000003): "15007040700",
(-159.52111816399997, 21.922607422000056): "15007040700",
(-156.14270019499997, 20.840393066000047): "15009030100",
(-155.85968017599998, 20.26519775400004): "15001021800",
(-155.73327636699997, 20.166809082000043): "15001021800",
(-155.89270019499997, 20.23522949200003): "15001021800",
(-156.26019287099996, 20.899414062000062): "15009030201",
(-156.22076415999996, 20.91241455100004): "15009030201",
(-156.20739746099997, 20.890991211000028): "15009030201",
(-159.46496581999997, 21.90460205100004): "15007040603",
(-159.46441650399998, 21.905212402000075): "15007040603",
(-154.82519531299997, 19.49182128900003): "15001021101",
(-121.06768798799999, 36.61480712900004): "06069000802",
(-117.391601563, 36.33343505900007): "06027000800",
(-117.85546874999994, 36.46960449200003): "06027000800",
(-117.23529052699996, 36.387634277000075): "06027000800",
(-118.15270996099997, 36.725219727000024): "06027000800",
(-118.13891601599994, 36.56683349600007): "06027000800",
(-117.311096191, 36.783386230000076): "06027000800",
(-118.00030517599998, 36.283813477000024): "06027000800",
(-116.86248779299996, 36.46124267600004): "06027000800",
(-117.16418456999997, 36.60681152300003): "06027000800",
(-117.06939697299998, 36.158386230000076): "06027000800",
(-117.873596191, 36.487609863000046): "06027000800",
(-116.82971191399997, 36.283386230000076): "06027000800",
(-117.21667480499997, 35.95843505900007): "06027000800",
(-118.04998779299996, 36.59478759800004): "06027000800",
(-117.03576660199997, 36.27801513700007): "06027000800",
(-116.10028076199995, 35.83380127000004): "06027000800",
(-117.86499023399995, 36.14422607400007): "06027000800",
(-155.10320912843935, 19.497857096442765): "15001021010",
(-155.91378674587037, 19.516632121497878): "15001021402",
(-156.3306524489697, 20.825377142028497): "15009030402",
(-156.5429023670438, 20.917074254751412): "15009030800",
(-159.48416820625405, 21.907546119100093): "15007040604",
}
df["GEOID10_TRACT"] = df.geometry.apply(
lambda point: lookups[(point.x, point.y)]
)
return df
class TestUSArmyFUDSETL(TestETL):
"""Tests the FUDS ETL.
This uses pytest-snapshot.
To update individual snapshots: $ poetry run pytest
data_pipeline/tests/sources/us_army_fuds/test_etl.py::TestClassNameETL::<testname>
--snapshot-update
"""
_ETL_CLASS = USArmyFUDS
_SAMPLE_DATA_PATH = pathlib.Path(__file__).parents[0] / "data"
_SAMPLE_DATA_FILE_NAME = "fuds.geojson"
_SAMPLE_DATA_ZIP_FILE_NAME = "fuds.geojson"
_EXTRACT_TMP_FOLDER_NAME = "USArmyFUDS"
def setup_method(self, _method, filename=__file__):
"""Invoke `setup_method` from Parent, but using the current file name.
This code can be copied identically between all child classes.
"""
super().setup_method(_method=_method, filename=filename)
def test_init(self, mock_etl, mock_paths):
"""Tests that the mock NationalRiskIndexETL class instance was
initiliazed correctly.
Validates the following conditions:
- self.DATA_PATH points to the "data" folder in the temp directory
- self.TMP_PATH points to the "data/tmp" folder in the temp directory
- self.INPUT_PATH points to the correct path in the temp directory
- self.OUTPUT_PATH points to the correct path in the temp directory
"""
# setup
etl = self._ETL_CLASS()
# validation
assert etl.GEOID_FIELD_NAME == "GEOID10"
assert etl.GEOID_TRACT_FIELD_NAME == "GEOID10_TRACT"
assert etl.NAME == "us_army_fuds"
assert etl.GEO_LEVEL == ValidGeoLevel.CENSUS_TRACT
assert etl.COLUMNS_TO_KEEP == [
etl.GEOID_TRACT_FIELD_NAME,
etl.ELIGIBLE_FUDS_COUNT_FIELD_NAME,
etl.INELIGIBLE_FUDS_COUNT_FIELD_NAME,
etl.ELIGIBLE_FUDS_BINARY_FIELD_NAME,
]
def test_get_output_file_path(self, mock_etl, mock_paths):
"""Tests the right file name is returned."""
etl = self._ETL_CLASS()
data_path, tmp_path = mock_paths
output_file_path = etl._get_output_file_path()
expected_output_file_path = (
data_path / "dataset" / self._ETL_CLASS.NAME / "usa.csv"
)
assert output_file_path == expected_output_file_path
def test_fixtures_contain_shared_tract_ids_base(self, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
return super().test_fixtures_contain_shared_tract_ids_base(
mock_etl, mock_paths
)
def test_transform_base(self, snapshot, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
super().test_transform_base(
snapshot=snapshot, mock_etl=mock_etl, mock_paths=mock_paths
)
def test_transform_sets_output_df_base(self, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
super().test_transform_sets_output_df_base(
mock_etl=mock_etl, mock_paths=mock_paths
)
def test_validate_base(self, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
super().test_validate_base(mock_etl=mock_etl, mock_paths=mock_paths)
def test_full_etl_base(self, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
return super().test_full_etl_base(mock_etl, mock_paths)
def test_get_data_frame_base(self, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
return super().test_get_data_frame_base(mock_etl, mock_paths)
def test_tracts_without_fuds_not_in_results(self, mock_etl, mock_paths):
with mock.patch(
"data_pipeline.etl.sources.us_army_fuds.etl.add_tracts_for_geometries",
new=_fake_add_tracts_for_geometries,
):
etl = self._setup_etl_instance_and_run_extract(
mock_etl=mock_etl, mock_paths=mock_paths
)
etl.transform()
etl.validate()
etl.load()
df = etl.get_data_frame()
assert len(df[etl.GEOID_TRACT_FIELD_NAME]) == len(
self._FIXTURES_SHARED_TRACT_IDS
)