mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-29 07:41:17 -07:00
including fraction of state AMI
This commit is contained in:
parent
4ae7eff4c4
commit
ce5e8c5351
4 changed files with 1016 additions and 775 deletions
|
@ -0,0 +1,53 @@
|
||||||
|
GEOID2,Median household income (State)
|
||||||
|
01,50536
|
||||||
|
02,77640
|
||||||
|
04,58945
|
||||||
|
05,47597
|
||||||
|
06,75235
|
||||||
|
08,72331
|
||||||
|
09,78444
|
||||||
|
10,68287
|
||||||
|
11,86420
|
||||||
|
12,55660
|
||||||
|
13,58700
|
||||||
|
15,81275
|
||||||
|
16,55785
|
||||||
|
17,65886
|
||||||
|
18,56303
|
||||||
|
19,60523
|
||||||
|
20,59597
|
||||||
|
21,50589
|
||||||
|
22,49469
|
||||||
|
23,57918
|
||||||
|
24,84805
|
||||||
|
25,81215
|
||||||
|
26,57144
|
||||||
|
27,71306
|
||||||
|
28,45081
|
||||||
|
29,55461
|
||||||
|
30,54970
|
||||||
|
31,61439
|
||||||
|
32,60365
|
||||||
|
33,76768
|
||||||
|
34,82545
|
||||||
|
35,49754
|
||||||
|
36,68486
|
||||||
|
37,54602
|
||||||
|
38,64894
|
||||||
|
39,56602
|
||||||
|
40,52919
|
||||||
|
41,62818
|
||||||
|
42,61744
|
||||||
|
44,67167
|
||||||
|
45,53199
|
||||||
|
46,58275
|
||||||
|
47,53320
|
||||||
|
48,61874
|
||||||
|
49,71621
|
||||||
|
50,61973
|
||||||
|
51,74222
|
||||||
|
53,73775
|
||||||
|
54,46711
|
||||||
|
55,61747
|
||||||
|
56,64049
|
||||||
|
72,20539
|
|
|
@ -24,7 +24,20 @@ class CensusACSETL(ExtractTransformLoad):
|
||||||
]
|
]
|
||||||
self.MEDIAN_INCOME_FIELD = "B19013_001E"
|
self.MEDIAN_INCOME_FIELD = "B19013_001E"
|
||||||
self.MEDIAN_INCOME_FIELD_NAME = "Median household income in the past 12 months"
|
self.MEDIAN_INCOME_FIELD_NAME = "Median household income in the past 12 months"
|
||||||
|
self.MEDIAN_INCOME_STATE_FIELD_NAME = "Median household income (State)"
|
||||||
|
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
|
||||||
|
"Median household income (% of state median household income)"
|
||||||
|
)
|
||||||
|
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
||||||
self.df: pd.DataFrame
|
self.df: pd.DataFrame
|
||||||
|
self.state_median_income_df: pd.DataFrame
|
||||||
|
|
||||||
|
# TODO: refactor this to put this file on s3 and download it from there
|
||||||
|
self.STATE_MEDIAN_INCOME_FILE_PATH = (
|
||||||
|
self.DATA_PATH
|
||||||
|
/ "needs_to_be_moved_to_s3"
|
||||||
|
/ "2014_to_2019_state_median_income.csv"
|
||||||
|
)
|
||||||
|
|
||||||
def _fips_from_censusdata_censusgeo(self, censusgeo: censusdata.censusgeo) -> str:
|
def _fips_from_censusdata_censusgeo(self, censusgeo: censusdata.censusgeo) -> str:
|
||||||
"""Create a FIPS code from the proprietary censusgeo index."""
|
"""Create a FIPS code from the proprietary censusgeo index."""
|
||||||
|
@ -59,12 +72,36 @@ class CensusACSETL(ExtractTransformLoad):
|
||||||
func=self._fips_from_censusdata_censusgeo
|
func=self._fips_from_censusdata_censusgeo
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.state_median_income_df = pd.read_csv(
|
||||||
|
# TODO: Replace with reading from S3.
|
||||||
|
filepath_or_buffer=self.STATE_MEDIAN_INCOME_FILE_PATH,
|
||||||
|
dtype={self.STATE_GEOID_FIELD_NAME: "string"},
|
||||||
|
)
|
||||||
|
|
||||||
def transform(self) -> None:
|
def transform(self) -> None:
|
||||||
logger.info("Starting Census ACS Transform")
|
logger.info("Starting Census ACS Transform")
|
||||||
|
|
||||||
# Rename median income
|
# Rename median income
|
||||||
self.df[self.MEDIAN_INCOME_FIELD_NAME] = self.df[self.MEDIAN_INCOME_FIELD]
|
self.df[self.MEDIAN_INCOME_FIELD_NAME] = self.df[self.MEDIAN_INCOME_FIELD]
|
||||||
|
|
||||||
|
# TODO: handle null values for CBG median income, which are `-666666666`.
|
||||||
|
|
||||||
|
# Join state data on CBG data:
|
||||||
|
self.df[self.STATE_GEOID_FIELD_NAME] = (
|
||||||
|
self.df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
|
||||||
|
)
|
||||||
|
self.df = self.df.merge(
|
||||||
|
self.state_median_income_df,
|
||||||
|
how="left",
|
||||||
|
on=self.STATE_GEOID_FIELD_NAME,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Calculate the income of the block group as a fraction of the state income:
|
||||||
|
self.df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
|
||||||
|
self.df[self.MEDIAN_INCOME_FIELD_NAME]
|
||||||
|
/ self.df[self.MEDIAN_INCOME_STATE_FIELD_NAME]
|
||||||
|
)
|
||||||
|
|
||||||
# Calculate percent unemployment.
|
# Calculate percent unemployment.
|
||||||
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
||||||
self.df[self.UNEMPLOYED_FIELD_NAME] = self.df.B23025_005E / self.df.B23025_003E
|
self.df[self.UNEMPLOYED_FIELD_NAME] = self.df.B23025_005E / self.df.B23025_003E
|
||||||
|
@ -98,6 +135,8 @@ class CensusACSETL(ExtractTransformLoad):
|
||||||
self.UNEMPLOYED_FIELD_NAME,
|
self.UNEMPLOYED_FIELD_NAME,
|
||||||
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
||||||
self.MEDIAN_INCOME_FIELD_NAME,
|
self.MEDIAN_INCOME_FIELD_NAME,
|
||||||
|
self.MEDIAN_INCOME_STATE_FIELD_NAME,
|
||||||
|
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME,
|
||||||
]
|
]
|
||||||
|
|
||||||
self.df[columns_to_include].to_csv(
|
self.df[columns_to_include].to_csv(
|
||||||
|
|
136
data/data-pipeline/data_pipeline/ipython/census_explore.ipynb
Normal file
136
data/data-pipeline/data_pipeline/ipython/census_explore.ipynb
Normal file
|
@ -0,0 +1,136 @@
|
||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "0491828b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import censusdata\n",
|
||||||
|
"import csv\n",
|
||||||
|
"from pathlib import Path\n",
|
||||||
|
"import os\n",
|
||||||
|
"import sys\n",
|
||||||
|
"\n",
|
||||||
|
"module_path = os.path.abspath(os.path.join(\"../..\"))\n",
|
||||||
|
"if module_path not in sys.path:\n",
|
||||||
|
" sys.path.append(module_path)\n",
|
||||||
|
"\n",
|
||||||
|
"from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"ACS_YEAR = 2019\n",
|
||||||
|
"\n",
|
||||||
|
"DATA_PATH = Path.cwd().parent / \"data\"\n",
|
||||||
|
"FIPS_CSV_PATH = DATA_PATH / \"fips_states_2010.csv\"\n",
|
||||||
|
"\n",
|
||||||
|
"GEOID_FIELD_NAME = \"GEOID10\"\n",
|
||||||
|
"UNEMPLOYED_FIELD_NAME = \"Unemployed Civilians (fraction)\"\n",
|
||||||
|
"\n",
|
||||||
|
"# Some display settings to make pandas outputs more readable.\n",
|
||||||
|
"pd.set_option(\"display.expand_frame_repr\", False)\n",
|
||||||
|
"pd.set_option(\"display.precision\", 2)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "654f25a1",
|
||||||
|
"metadata": {
|
||||||
|
"scrolled": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Following the tutorial at https://jtleider.github.io/censusdata/example1.html.\n",
|
||||||
|
"# Full list of fields is at https://www2.census.gov/programs-surveys/acs/summary_file/2019/documentation/user_tools/ACS2019_Table_Shells.xlsx\n",
|
||||||
|
"censusdata.printtable(censusdata.censustable(src=\"acs5\", year=ACS_YEAR, table=\"B19013\"))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "8999cea4",
|
||||||
|
"metadata": {
|
||||||
|
"scrolled": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def fips_from_censusdata_censusgeo(censusgeo: censusdata.censusgeo) -> str:\n",
|
||||||
|
" \"\"\"Create a FIPS code from the proprietary censusgeo index.\"\"\"\n",
|
||||||
|
" fips = \"\".join([value for (key, value) in censusgeo.params()])\n",
|
||||||
|
" return fips\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"dfs = []\n",
|
||||||
|
"for fips in get_state_fips_codes(DATA_PATH):\n",
|
||||||
|
" print(f\"Fetching data for fips {fips}\")\n",
|
||||||
|
" dfs.append(\n",
|
||||||
|
" censusdata.download(\n",
|
||||||
|
" src=\"acs5\",\n",
|
||||||
|
" year=ACS_YEAR,\n",
|
||||||
|
" geo=censusdata.censusgeo(\n",
|
||||||
|
" [\n",
|
||||||
|
" (\"state\", fips) \n",
|
||||||
|
" #, (\"county\", \"*\"), (\"block group\", \"*\")\n",
|
||||||
|
" ]\n",
|
||||||
|
" ),\n",
|
||||||
|
" var=[\"B23025_005E\", \"B23025_003E\", \"B19013_001E\"],\n",
|
||||||
|
" )\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"df = pd.concat(dfs)\n",
|
||||||
|
"\n",
|
||||||
|
"df[GEOID_FIELD_NAME] = df.index.to_series().apply(func=fips_from_censusdata_censusgeo)\n",
|
||||||
|
"\n",
|
||||||
|
"df.head()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "2a269bb1",
|
||||||
|
"metadata": {
|
||||||
|
"scrolled": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"columns_to_include = [\"GEOID2\", \"Median household income (State)\"]\n",
|
||||||
|
"\n",
|
||||||
|
"df.rename(columns={\"GEOID10\": \"GEOID2\", \"B19013_001E\": \"Median household income (State)\"}, inplace=True)\n",
|
||||||
|
"\n",
|
||||||
|
"df[columns_to_include].to_csv(path_or_buf= \"/Users/lucas/Documents/usds/repos/justice40-tool/data/data-pipeline/data_pipeline/data/needs_to_be_moved_to_s3/2014_to_2019_state_median_income.csv\", index=False)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "91932af5",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue