fixing missing states

This commit is contained in:
lucasmbrown-usds 2022-09-07 13:16:47 -04:00
parent d41153d89d
commit c6569b641e

View file

@ -2,6 +2,11 @@ from pathlib import Path
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.score.constants import (
TILES_ISLAND_AREA_FIPS_CODES,
TILES_PUERTO_RICO_FIPS_CODE,
)
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
from data_pipeline.utils import get_module_logger, download_file_from_url
logger = get_module_logger(__name__)
@ -9,12 +14,19 @@ logger = get_module_logger(__name__)
class CDCLifeExpectancy(ExtractTransformLoad):
def __init__(self):
self.FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/US_A.CSV"
self.USA_FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/US_A.CSV"
# For some reason, LEEP does not include Maine or Wisconsin in its "All of
# USA" file. Load these separately.
self.WISCONSIN_FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/WI_A.CSV"
self.MAINE_FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/ME_A.CSV"
self.OUTPUT_PATH: Path = (
self.DATA_PATH / "dataset" / "cdc_life_expectancy"
)
self.TRACT_INPUT_COLUMN_NAME = "Tract ID"
self.STATE_INPUT_COLUMN_NAME = "STATE2KX"
self.LIFE_EXPECTANCY_FIELD_NAME = "Life expectancy (years)"
# Constants for output
@ -29,26 +41,108 @@ class CDCLifeExpectancy(ExtractTransformLoad):
def extract(self) -> None:
logger.info("Starting data download.")
download_file_name = (
all_usa_download_file_name = (
self.get_tmp_path() / "cdc_life_expectancy" / "usa.csv"
)
download_file_from_url(
file_url=self.FILE_URL,
download_file_name=download_file_name,
file_url=self.USA_FILE_URL,
download_file_name=all_usa_download_file_name,
verify=True,
)
self.raw_df = pd.read_csv(
filepath_or_buffer=download_file_name,
dtype={
# The following need to remain as strings for all of their digits, not get converted to numbers.
self.TRACT_INPUT_COLUMN_NAME: "string",
},
pandas_read_csv_dtype_settings = {
# The following need to remain as strings for all of their digits, not get converted to numbers.
self.TRACT_INPUT_COLUMN_NAME: "string",
self.STATE_INPUT_COLUMN_NAME: "string",
}
all_usa_raw_df = pd.read_csv(
filepath_or_buffer=all_usa_download_file_name,
dtype=pandas_read_csv_dtype_settings,
low_memory=False,
)
# Check which states are missing
state_fips_codes = get_state_fips_codes(self.DATA_PATH)
states_in_life_expectancy_usa_file = all_usa_raw_df[
self.STATE_INPUT_COLUMN_NAME
].unique()
expected_states_set = (
set(state_fips_codes)
# We don't expect LEEP to have data for island areas or Puerto Rico.
- set(TILES_ISLAND_AREA_FIPS_CODES)
- set(TILES_PUERTO_RICO_FIPS_CODE)
)
# Find which states are missing from the expected set.
states_missing = sorted(
list(expected_states_set - set(states_in_life_expectancy_usa_file))
)
if states_missing != ["23", "55"]:
raise ValueError(
"LEEP data has changed. The states missing from the data are "
"no longer the same."
)
logger.info("Downloading data for Maine")
maine_download_file_name = (
self.get_tmp_path() / "cdc_life_expectancy" / "maine.csv"
)
download_file_from_url(
file_url=self.MAINE_FILE_URL,
download_file_name=maine_download_file_name,
verify=True,
)
maine_raw_df = pd.read_csv(
filepath_or_buffer=maine_download_file_name,
dtype=pandas_read_csv_dtype_settings,
low_memory=False,
)
logger.info("Downloading data for Wisconsin")
wisconsin_download_file_name = (
self.get_tmp_path() / "cdc_life_expectancy" / "wisconsin.csv"
)
download_file_from_url(
file_url=self.WISCONSIN_FILE_URL,
download_file_name=wisconsin_download_file_name,
verify=True,
)
wisconsin_raw_df = pd.read_csv(
filepath_or_buffer=wisconsin_download_file_name,
dtype=pandas_read_csv_dtype_settings,
low_memory=False,
)
combined_df = pd.concat(
objs=[all_usa_raw_df, maine_raw_df, wisconsin_raw_df],
ignore_index=True,
verify_integrity=True,
axis=0,
)
states_in_combined_df = combined_df[
self.STATE_INPUT_COLUMN_NAME
].unique()
# Find which states are missing from the combined df.
states_missing = sorted(
list(expected_states_set - set(states_in_combined_df))
)
if len(states_missing) != 0:
raise ValueError(
"The states missing from combined dataframe are "
"no longer as expected."
)
# Save the updated version
self.raw_df = combined_df
def transform(self) -> None:
logger.info("Starting DOE energy burden transform.")
logger.info("Starting CDC life expectancy transform.")
self.output_df = self.raw_df.rename(
columns={