Issue 1900: Tribal overlap with Census tracts (#1903)

* working notebook

* updating notebook

* wip

* fixing broken tests

* adding tribal overlap files

* WIP

* WIP

* WIP, calculated count and names

* working

* partial cleanup

* partial cleanup

* updating field names

* fixing bug

* removing pyogrio

* removing unused imports

* updating test fixtures to be more realistic

* cleaning up notebook

* fixing black

* fixing flake8 errors

* adding tox instructions

* updating etl_score

* suppressing warning

* Use projected CRSes, ignore geom types (#1900)

I looked into this a bit, and in general the geometry type mismatch
changes very little about the calculation; we have a mix of
multipolygons and polygons. The fastest thing to do is just not keep
geom type; I did some runs with it set to both True and False, and
they're the same within 9 digits of precision. Logically we just want to
overlaps, regardless of how the actual geometries are encoded between
the frames, so we can in this case ignore the geom types and feel OKAY.

I also moved to projected CRSes, since we are actually trying to do area
calculations and so like, we should. Again, the change is small in
magnitude but logically more sound.

* Readd CDC dataset config (#1900)

* adding comments to fips code

* delete unnecessary loggers

Co-authored-by: matt bowen <matthew.r.bowen@omb.eop.gov>
This commit is contained in:
Lucas Merrill Brown 2022-09-20 14:53:12 -04:00 committed by GitHub
commit aca226165c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
19 changed files with 1921 additions and 36 deletions

View file

@ -106,6 +106,8 @@ def etl_runner(dataset_to_run: str = None) -> None:
# Otherwise, the exceptions are silently ignored.
fut.result()
# Note: these high-memory datasets also usually require the Census geojson to be
# generated, and one of them requires the Tribal geojson to be generated.
if high_memory_datasets:
logger.info("Running high-memory jobs")
for dataset in high_memory_datasets: