mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-29 20:11:17 -07:00
Maryland EJSCREEN Addition to comparison tool (#1143)
* finalized * cleanup notebook * cleanup * run black
This commit is contained in:
parent
2604b66cf7
commit
a98ea35f74
6 changed files with 174 additions and 2 deletions
|
@ -0,0 +1,113 @@
|
|||
from glob import glob
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.config import settings
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class MarylandEJScreenETL(ExtractTransformLoad):
|
||||
"""Maryland EJSCREEN class that ingests dataset represented
|
||||
here: https://p1.cgis.umd.edu/mdejscreen/help.html
|
||||
Please see the README in this module for further details.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.MARYLAND_EJSCREEN_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL + "/MD_EJScreen.zip"
|
||||
)
|
||||
|
||||
self.SHAPE_FILES_PATH = self.TMP_PATH / "mdejscreen"
|
||||
self.OUTPUT_CSV_PATH = self.DATA_PATH / "dataset" / "maryland_ejscreen"
|
||||
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
|
||||
field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD,
|
||||
]
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Downloading Maryland EJSCREEN Data")
|
||||
super().extract(
|
||||
self.MARYLAND_EJSCREEN_URL,
|
||||
self.TMP_PATH,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Transforming Maryland EJSCREEN Data")
|
||||
|
||||
list_of_files = list(glob(str(self.SHAPE_FILES_PATH) + "/*.shp"))
|
||||
|
||||
# Ignore counties becauses this is not the level of measurement
|
||||
# that is consistent with our current scoring and ranking methodology.
|
||||
dfs_list = [
|
||||
gpd.read_file(f)
|
||||
for f in list_of_files
|
||||
if not f.endswith("CountiesEJScore.shp")
|
||||
]
|
||||
|
||||
# Set the Census tract as the index and drop the geometry column
|
||||
# that produces the census tract boundaries.
|
||||
# The latter is because Geopandas raises an exception if there
|
||||
# are duplicate geometry columns.
|
||||
# Moreover, since the unit of measurement is at the tract level
|
||||
# we can consistantly merge this with other datasets
|
||||
dfs_list = [
|
||||
df.set_index("Census_Tra").drop("geometry", axis=1)
|
||||
for df in dfs_list
|
||||
]
|
||||
# pylint: disable=unsubscriptable-object
|
||||
self.df = gpd.GeoDataFrame(pd.concat(dfs_list, axis=1))
|
||||
|
||||
# Reset index so that we no longer have the tract as our index
|
||||
self.df = self.df.reset_index()
|
||||
# coerce GEODID into integer
|
||||
# The only reason why this is done is because Maryland's GEODID's start with
|
||||
# "24". This is NOT standard practice and should never be done as rightly pointed
|
||||
# out by Lucas: "converting to int would lose the leading 0 and make this geoid invalid".
|
||||
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
|
||||
self.df["Census_Tra"] = (self.df["Census_Tra"]).astype(int)
|
||||
|
||||
# Drop the 10 census tracts that are zero: please see here:
|
||||
# https://github.com/usds/justice40-tool/issues/239#issuecomment-995821572
|
||||
self.df = self.df[self.df["Census_Tra"] != 0]
|
||||
# Rename columns
|
||||
self.df.rename(
|
||||
columns={
|
||||
"Census_Tra": self.GEOID_TRACT_FIELD_NAME,
|
||||
"EJScore": field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
|
||||
},
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
# This computational step will be used to establish a
|
||||
# threshold for burden (line 104)
|
||||
self.df[
|
||||
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
] = self.df[field_names.MARYLAND_EJSCREEN_SCORE_FIELD].rank(
|
||||
pct=True, ascending=True
|
||||
)
|
||||
|
||||
# An arbitrarily chosen threshold is used in the comparison tool output
|
||||
self.df[field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD] = (
|
||||
self.df[
|
||||
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= 0.75
|
||||
)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Maryland EJSCREEN CSV")
|
||||
# write maryland tracts to csv
|
||||
self.OUTPUT_CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
self.OUTPUT_CSV_PATH / "maryland.csv", index=False
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue