Backend change for Zipfile pt. 2 (#469)

* Fixes #303 : adding downloadable zip archive logic
* linter recommendations
* Pushes data directory to AWS. We'll want to move to use AWS for this ASAP, but this works for now
* updating pattern
This commit is contained in:
Nat Hillard 2021-08-09 10:39:59 -04:00 committed by GitHub
parent 6eb7382d48
commit 9a9d5fdf7f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 223 additions and 10 deletions

60
.github/workflows/deploy_data.yml vendored Normal file
View file

@ -0,0 +1,60 @@
name: Deploy Data
on:
push:
paths:
- 'data/data-pipeline/*'
pull_request:
paths:
- 'data/data-pipeline/*'
jobs:
deploy_data:
runs-on: ubuntu-latest
defaults:
run:
working-directory: data/data-pipeline
strategy:
matrix:
python-version: [3.9]
steps:
- name: Checkout source
uses: actions/checkout@v2
- name: Print variables to help debug
uses: hmarr/debug-action@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Setup Poetry
uses: Gr1N/setup-poetry@v7
- name: Print poetry version
run: poetry --version
- name: Install dependencies
run: poetry install
- name: Install GDAL/ogr2ogr
run: |
sudo apt-add-repository ppa:ubuntugis/ubuntugis-unstable
sudo apt-get update
sudo apt-get install gdal-bin libgdal-dev
pip install GDAL==3.2.3
- name: Run Scripts
run: |
poetry run download_census
poetry run etl_and_score
- name: Configure AWS Credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.DATA_DEV_AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.DATA_DEV_AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Deploy to Geoplatform AWS
run: |
aws s3 sync ./data_pipeline/data/ s3://justice40-data/data-pipeline/data --delete
- name: Update PR with Comment about deployment
uses: mshick/add-pr-comment@v1
with:
message: |
Data Synced! Find it here: s3://justice40-data/data-pipeline/data/
repo-token: ${{ secrets.GITHUB_TOKEN }}
repo-token-user-login: 'github-actions[bot]' # The user.login for temporary GitHub tokens
allow-repeats: false # This is the default

View file

@ -1,7 +1,19 @@
import pandas as pd
import json
import zipfile
from pathlib import Path
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.utils import get_module_logger
from data_pipeline.utils import get_module_logger, get_zip_info
## zlib is not available on all systems
try:
import zlib # noqa # pylint: disable=unused-import
compression = zipfile.ZIP_DEFLATED
except (ImportError, AttributeError):
compression = zipfile.ZIP_STORED
logger = get_module_logger(__name__)
@ -18,11 +30,14 @@ class PostScoreETL(ExtractTransformLoad):
self.CENSUS_COUNTIES_COLS = ["USPS", "GEOID", "NAME"]
self.CENSUS_USA_CSV = self.DATA_PATH / "census" / "csv" / "us.csv"
self.SCORE_CSV_PATH = self.DATA_PATH / "score" / "csv"
self.DOWNLOADABLE_INFO_PATH = self.DATA_PATH / "score" / "downloadable"
self.STATE_CSV = self.DATA_PATH / "census" / "csv" / "fips_states_2010.csv"
self.FULL_SCORE_CSV = self.SCORE_CSV_PATH / "full" / "usa.csv"
self.TILR_SCORE_CSV = self.SCORE_CSV_PATH / "tile" / "usa.csv"
self.FULL_SCORE_CSV_PLUS_COUNTIES = (
self.SCORE_CSV_PATH / "full" / "usa_counties.csv"
)
self.TILES_SCORE_COLUMNS = [
"GEOID10",
@ -35,6 +50,46 @@ class PostScoreETL(ExtractTransformLoad):
self.TILES_SCORE_CSV_PATH = self.SCORE_CSV_PATH / "tiles"
self.TILES_SCORE_CSV = self.TILES_SCORE_CSV_PATH / "usa.csv"
# These are the
self.DOWNLOADABLE_SCORE_INDICATORS_BASIC = [
"Percent individuals age 25 or over with less than high school degree",
"Linguistic isolation (percent)",
"Poverty (Less than 200% of federal poverty line)",
"Unemployed civilians (percent)",
"Housing burden (percent)",
"Respiratory hazard index",
"Diesel particulate matter",
"Particulate matter (PM2.5)",
"Traffic proximity and volume",
"Proximity to RMP sites",
"Wastewater discharge",
"Percent pre-1960s housing (lead paint indicator)",
"Total population",
]
# For every indicator above, we want to include percentile and min-max normalized variants also
self.DOWNLOADABLE_SCORE_INDICATORS_FULL = list(
pd.core.common.flatten(
[
[p, f"{p} (percentile)", f"{p} (min-max normalized)"]
for p in self.DOWNLOADABLE_SCORE_INDICATORS_BASIC
]
)
)
# Finally we augment with the GEOID10, county, and state
self.DOWNLOADABLE_SCORE_COLUMNS = [
"GEOID10",
"County Name",
"State Name",
*self.DOWNLOADABLE_SCORE_INDICATORS_FULL,
]
self.DOWNLOADABLE_SCORE_CSV = self.DOWNLOADABLE_INFO_PATH / "usa.csv"
self.DOWNLOADABLE_SCORE_EXCEL = self.DOWNLOADABLE_INFO_PATH / "usa.xlsx"
self.DOWNLOADABLE_SCORE_ZIP = (
self.DOWNLOADABLE_INFO_PATH / "Screening Tool Data.zip"
)
self.counties_df: pd.DataFrame
self.states_df: pd.DataFrame
self.score_df: pd.DataFrame
@ -43,7 +98,8 @@ class PostScoreETL(ExtractTransformLoad):
def extract(self) -> None:
super().extract(
self.CENSUS_COUNTIES_ZIP_URL, self.TMP_PATH,
self.CENSUS_COUNTIES_ZIP_URL,
self.TMP_PATH,
)
logger.info("Reading Counties CSV")
@ -67,7 +123,8 @@ class PostScoreETL(ExtractTransformLoad):
# rename some of the columns to prepare for merge
self.counties_df = self.counties_df[["USPS", "GEOID", "NAME"]]
self.counties_df.rename(
columns={"USPS": "State Abbreviation", "NAME": "County Name"}, inplace=True,
columns={"USPS": "State Abbreviation", "NAME": "County Name"},
inplace=True,
)
# remove unnecessary columns
@ -122,14 +179,45 @@ class PostScoreETL(ExtractTransformLoad):
# set the score to the new df
self.score_county_state_merged = removed_df
def load(self) -> None:
def _save_full_csv(self):
logger.info("Saving Full Score CSV with County Information")
self.SCORE_CSV_PATH.mkdir(parents=True, exist_ok=True)
self.score_county_state_merged.to_csv(self.FULL_SCORE_CSV, index=False)
self.score_county_state_merged.to_csv(
self.FULL_SCORE_CSV_PLUS_COUNTIES, index=False
)
def _save_tile_csv(self):
logger.info("Saving Tile Score CSV")
# TODO: check which are the columns we'll use
# Related to: https://github.com/usds/justice40-tool/issues/302
score_tiles = self.score_county_state_merged[self.TILES_SCORE_COLUMNS]
self.TILES_SCORE_CSV_PATH.mkdir(parents=True, exist_ok=True)
score_tiles.to_csv(self.TILES_SCORE_CSV, index=False)
def _save_downloadable_zip(self):
logger.info("Saving Downloadable CSV")
logger.info(list(self.score_county_state_merged.columns))
logger.info(self.DOWNLOADABLE_SCORE_COLUMNS)
downloadable_tiles = self.score_county_state_merged[
self.DOWNLOADABLE_SCORE_COLUMNS
]
self.DOWNLOADABLE_INFO_PATH.mkdir(parents=True, exist_ok=True)
logger.info("Writing downloadable csv")
downloadable_tiles.to_csv(self.DOWNLOADABLE_SCORE_CSV, index=False)
logger.info("Writing downloadable excel")
downloadable_tiles.to_excel(self.DOWNLOADABLE_SCORE_EXCEL, index=False)
logger.info("Compressing files")
files_to_compress = [self.DOWNLOADABLE_SCORE_CSV, self.DOWNLOADABLE_SCORE_EXCEL]
with zipfile.ZipFile(self.DOWNLOADABLE_SCORE_ZIP, "w") as zf:
for f in files_to_compress:
zf.write(f, arcname=Path(f).name, compress_type=compression)
zip_info = get_zip_info(self.DOWNLOADABLE_SCORE_ZIP)
logger.info(json.dumps(zip_info, indent=4, sort_keys=True, default=str))
def load(self) -> None:
self._save_full_csv()
self._save_tile_csv()
self._save_downloadable_zip()

View file

@ -1,5 +1,7 @@
import datetime
import logging
import os
import sys
import shutil
import zipfile
from pathlib import Path
@ -119,8 +121,13 @@ def unzip_file_from_url(
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
logger.info(f"Downloading {file_url}")
download = requests.get(file_url, verify=verify)
file_contents = download.content
response = requests.get(file_url, verify=verify)
if response.status_code == 200:
file_contents = response.content
else:
sys.exit(
f"HTTP response {response.status_code} from url {file_url}. Info: {response.content}"
)
zip_file_path = download_path / "downloaded.zip"
zip_file = open(zip_file_path, "wb")
@ -152,6 +159,7 @@ def score_folder_cleanup() -> None:
logger.info("Initializing all score data")
remove_all_from_dir(data_path / "score" / "csv")
remove_all_from_dir(data_path / "score" / "geojson")
remove_all_from_dir(data_path / "score" / "downloadable")
def temp_folder_cleanup() -> None:
@ -1176,3 +1184,29 @@ def get_excel_column_name(index: int) -> str:
]
return excel_column_names[index]
def get_zip_info(archive_path: Path) -> list:
"""
Returns information about a provided archive
Args:
archive_path (pathlib.Path): Path of the archive to be inspected
Returns:
a list of information about every file in the zipfile
"""
zf = zipfile.ZipFile(archive_path)
info_list = []
for info in zf.infolist():
info_dict = {}
info_dict["Filename"] = info.filename
info_dict["Comment"] = info.comment.decode("utf8")
info_dict["Modified"] = datetime.datetime(*info.date_time).isoformat()
info_dict["System"] = f"{info.create_system} (0 = Windows, 3 = Unix)"
info_dict["ZIP version"] = info.create_version
info_dict["Compressed"] = f"{info.compress_size} bytes"
info_dict["Uncompressed"] = f"{info.file_size} bytes"
info_list.append(info_dict)
return info_list

View file

@ -310,6 +310,14 @@ category = "main"
optional = false
python-versions = ">=2.7"
[[package]]
name = "et-xmlfile"
version = "1.1.0"
description = "An implementation of lxml.xmlfile for the standard library"
category = "dev"
optional = false
python-versions = ">=3.6"
[[package]]
name = "filelock"
version = "3.0.12"
@ -935,6 +943,17 @@ category = "main"
optional = false
python-versions = ">=3.7"
[[package]]
name = "openpyxl"
version = "3.0.7"
description = "A Python library to read/write Excel 2010 xlsx/xlsm files"
category = "dev"
optional = false
python-versions = ">=3.6,"
[package.dependencies]
et-xmlfile = "*"
[[package]]
name = "packaging"
version = "21.0"
@ -1529,7 +1548,7 @@ testing = ["pytest (>=4.6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytes
[metadata]
lock-version = "1.1"
python-versions = "^3.7.1"
content-hash = "6fcf0825ce80c30181c920385d4e9b5e79ac6930b9a59526a916703795977f76"
content-hash = "7380a36633c41b57d351df2facdf3a5fd05dfc9f0dc4f629d5f3dfec61181c6b"
[metadata.files]
appdirs = [
@ -1751,6 +1770,10 @@ entrypoints = [
{file = "entrypoints-0.3-py2.py3-none-any.whl", hash = "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19"},
{file = "entrypoints-0.3.tar.gz", hash = "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"},
]
et-xmlfile = [
{file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"},
{file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"},
]
filelock = [
{file = "filelock-3.0.12-py3-none-any.whl", hash = "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836"},
{file = "filelock-3.0.12.tar.gz", hash = "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59"},
@ -2068,6 +2091,10 @@ numpy = [
{file = "numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4"},
{file = "numpy-1.21.1.zip", hash = "sha256:dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd"},
]
openpyxl = [
{file = "openpyxl-3.0.7-py2.py3-none-any.whl", hash = "sha256:46af4eaf201a89b610fcca177eed957635f88770a5462fb6aae4a2a52b0ff516"},
{file = "openpyxl-3.0.7.tar.gz", hash = "sha256:6456a3b472e1ef0facb1129f3c6ef00713cebf62e736cd7a75bcc3247432f251"},
]
packaging = [
{file = "packaging-21.0-py3-none-any.whl", hash = "sha256:c86254f9220d55e31cc94d69bade760f0847da8000def4dfe1c6b872fd14ff14"},
{file = "packaging-21.0.tar.gz", hash = "sha256:7dc96269f53a4ccec5c0670940a4281106dd0bb343f47b7471f779df49c2fbe7"},

View file

@ -23,6 +23,7 @@ black = {version = "^21.6b0", allow-prereleases = true}
flake8 = "^3.9.2"
liccheck = "^0.6.2"
mypy = "^0.910"
openpyxl = "^3.0.7"
pylint = "^2.9.6"
pytest = "^6.2.4"
safety = "^1.10.3"
@ -100,6 +101,7 @@ authorized_licenses = [
]
[tool.poetry.scripts]
cleanup_census = 'data_pipeline.application:census_cleanup'
cleanup_data = 'data_pipeline.application:data_cleanup'
download_census = 'data_pipeline.application:census_data_download'
etl = 'data_pipeline.application:etl_run'

View file

@ -25,6 +25,7 @@ distlib==0.3.2; python_version >= "2.7" and python_full_version < "3.0.0" or pyt
dparse==0.5.1; python_version >= "3.5"
dynaconf==3.1.4
entrypoints==0.3; python_version >= "3.7"
et-xmlfile==1.1.0; python_version >= "3.6"
filelock==3.0.12; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
fiona==1.8.20; python_version >= "3.6"
flake8==3.9.2; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
@ -67,6 +68,7 @@ nbformat==5.1.3; python_full_version >= "3.6.1" and python_version >= "3.7"
nest-asyncio==1.5.1; python_full_version >= "3.6.1" and python_version >= "3.7"
notebook==6.4.0; python_version >= "3.6"
numpy==1.21.1; python_version >= "3.7"
openpyxl==3.0.7; python_version >= "3.6"
packaging==21.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
pandas==1.3.1; python_full_version >= "3.7.1"
pandocfilters==1.4.3; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7"