mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-08-10 15:34:18 -07:00
Refactor DOE Energy Burden and COI to use YAML (#1796)
* added tribalId for Supplemental dataset (#1804) * Setting zoom levels for tribal map (#1810) * NRI dataset and initial score YAML configuration (#1534) * update be staging gha * NRI dataset and initial score YAML configuration * checkpoint * adding data checks for release branch * passing tests * adding INPUT_EXTRACTED_FILE_NAME to base class * lint * columns to keep and tests * update be staging gha * checkpoint * update be staging gha * NRI dataset and initial score YAML configuration * checkpoint * adding data checks for release branch * passing tests * adding INPUT_EXTRACTED_FILE_NAME to base class * lint * columns to keep and tests * checkpoint * PR Review * renoving source url * tests * stop execution of ETL if there's a YAML schema issue * update be staging gha * adding source url as class var again * clean up * force cache bust * gha cache bust * dynamically set score vars from YAML * docsctrings * removing last updated year - optional reverse percentile * passing tests * sort order * column ordening * PR review * class level vars * Updating DatasetsConfig * fix pylint errors * moving metadata hint back to code Co-authored-by: lucasmbrown-usds <lucas.m.brown@omb.eop.gov> * Correct copy typo (#1809) * Add basic test suite for COI (#1518) * Update COI to use new yaml (#1518) * Add tests for DOE energy budren (1518 * Add dataset config for energy budren (1518) * Refactor ETL to use datasets.yml (#1518) * Add fake GEOIDs to COI tests (#1518) * Refactor _setup_etl_instance_and_run_extract to base (#1518) For the three classes we've done so far, a generic _setup_etl_instance_and_run_extract will work fine, for the moment we can reuse the same setup method until we decide future classes need more flexibility --- but they can also always subclass so... * Add output-path tests (#1518) * Update YAML to match constant (#1518) * Don't blindly set float format (#1518) * Add defaults for extract (#1518) * Run YAML load on all subclasses (#1518) * Update description fields (#1518) * Update YAML per final format (#1518) * Update fixture tract IDs (#1518) * Update base class refactor (#1518) Now that NRI is final I needed to make a small number of updates to my refactored code. * Remove old comment (#1518) * Fix type signature and return (#1518) * Update per code review (#1518) Co-authored-by: Jorge Escobar <83969469+esfoobar-usds@users.noreply.github.com> Co-authored-by: lucasmbrown-usds <lucas.m.brown@omb.eop.gov> Co-authored-by: Vim <86254807+vim-usds@users.noreply.github.com>
This commit is contained in:
parent
ed9b7172f7
commit
9635ef5ee2
44 changed files with 698 additions and 3640 deletions
|
@ -1,9 +1,8 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import get_module_logger, unzip_file_from_url
|
||||
from data_pipeline.etl.base import ExtractTransformLoad, ValidGeoLevel
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
@ -21,15 +20,27 @@ class ChildOpportunityIndex(ExtractTransformLoad):
|
|||
Full technical documents: https://www.diversitydatakids.org/sites/default/files/2020-02/ddk_coi2.0_technical_documentation_20200212.pdf.
|
||||
|
||||
Github repo: https://github.com/diversitydatakids/COI/
|
||||
|
||||
"""
|
||||
|
||||
# Metadata for the baseclass
|
||||
NAME = "child_opportunity_index"
|
||||
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
|
||||
|
||||
# Define these for easy code completion
|
||||
EXTREME_HEAT_FIELD: str
|
||||
HEALTHY_FOOD_FIELD: str
|
||||
IMPENETRABLE_SURFACES_FIELD: str
|
||||
READING_FIELD: str
|
||||
|
||||
def __init__(self):
|
||||
self.COI_FILE_URL = (
|
||||
self.SOURCE_URL = (
|
||||
"https://data.diversitydatakids.org/datastore/zip/f16fff12-b1e5-4f60-85d3-"
|
||||
"3a0ededa30a0?format=csv"
|
||||
)
|
||||
|
||||
# TODO: Decide about nixing this
|
||||
self.TRACT_INPUT_COLUMN_NAME = self.INPUT_GEOID_TRACT_FIELD_NAME
|
||||
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH / "dataset" / "child_opportunity_index"
|
||||
)
|
||||
|
@ -40,31 +51,19 @@ class ChildOpportunityIndex(ExtractTransformLoad):
|
|||
self.IMPENETRABLE_SURFACES_INPUT_FIELD = "HE_GREEN"
|
||||
self.READING_INPUT_FIELD = "ED_READING"
|
||||
|
||||
# Constants for output
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
field_names.EXTREME_HEAT_FIELD,
|
||||
field_names.HEALTHY_FOOD_FIELD,
|
||||
field_names.IMPENETRABLE_SURFACES_FIELD,
|
||||
field_names.READING_FIELD,
|
||||
]
|
||||
|
||||
self.raw_df: pd.DataFrame
|
||||
self.output_df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting 51MB data download.")
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=self.COI_FILE_URL,
|
||||
download_path=self.get_tmp_path(),
|
||||
unzipped_file_path=self.get_tmp_path() / "child_opportunity_index",
|
||||
super().extract(
|
||||
source_url=self.SOURCE_URL,
|
||||
extract_path=self.get_tmp_path(),
|
||||
)
|
||||
|
||||
self.raw_df = pd.read_csv(
|
||||
filepath_or_buffer=self.get_tmp_path()
|
||||
/ "child_opportunity_index"
|
||||
/ "raw.csv",
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
raw_df = pd.read_csv(
|
||||
filepath_or_buffer=self.get_tmp_path() / "raw.csv",
|
||||
# The following need to remain as strings for all of their digits, not get
|
||||
# converted to numbers.
|
||||
dtype={
|
||||
|
@ -73,16 +72,13 @@ class ChildOpportunityIndex(ExtractTransformLoad):
|
|||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
|
||||
output_df = self.raw_df.rename(
|
||||
output_df = raw_df.rename(
|
||||
columns={
|
||||
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
self.EXTREME_HEAT_INPUT_FIELD: field_names.EXTREME_HEAT_FIELD,
|
||||
self.HEALTHY_FOOD_INPUT_FIELD: field_names.HEALTHY_FOOD_FIELD,
|
||||
self.IMPENETRABLE_SURFACES_INPUT_FIELD: field_names.IMPENETRABLE_SURFACES_FIELD,
|
||||
self.READING_INPUT_FIELD: field_names.READING_FIELD,
|
||||
self.EXTREME_HEAT_INPUT_FIELD: self.EXTREME_HEAT_FIELD,
|
||||
self.HEALTHY_FOOD_INPUT_FIELD: self.HEALTHY_FOOD_FIELD,
|
||||
self.IMPENETRABLE_SURFACES_INPUT_FIELD: self.IMPENETRABLE_SURFACES_FIELD,
|
||||
self.READING_INPUT_FIELD: self.READING_FIELD,
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -95,8 +91,8 @@ class ChildOpportunityIndex(ExtractTransformLoad):
|
|||
|
||||
# Convert percents from 0-100 to 0-1 to standardize with our other fields.
|
||||
percent_fields_to_convert = [
|
||||
field_names.HEALTHY_FOOD_FIELD,
|
||||
field_names.IMPENETRABLE_SURFACES_FIELD,
|
||||
self.HEALTHY_FOOD_FIELD,
|
||||
self.IMPENETRABLE_SURFACES_FIELD,
|
||||
]
|
||||
|
||||
for percent_field_to_convert in percent_fields_to_convert:
|
||||
|
@ -105,11 +101,3 @@ class ChildOpportunityIndex(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
self.output_df = output_df
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.output_df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
||||
|
|
|
@ -2,63 +2,48 @@ from pathlib import Path
|
|||
import pandas as pd
|
||||
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import get_module_logger, unzip_file_from_url
|
||||
from data_pipeline.etl.base import ExtractTransformLoad, ValidGeoLevel
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class DOEEnergyBurden(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.DOE_FILE_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/DOE_LEAD_AMI_TRACT_2018_ALL.csv.zip"
|
||||
)
|
||||
NAME = "doe_energy_burden"
|
||||
SOURCE_URL: str = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/DOE_LEAD_AMI_TRACT_2018_ALL.csv.zip"
|
||||
)
|
||||
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
|
||||
|
||||
REVISED_ENERGY_BURDEN_FIELD_NAME: str
|
||||
|
||||
def __init__(self):
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH / "dataset" / "doe_energy_burden"
|
||||
)
|
||||
|
||||
self.TRACT_INPUT_COLUMN_NAME = "FIP"
|
||||
self.INPUT_ENERGY_BURDEN_FIELD_NAME = "BURDEN"
|
||||
self.REVISED_ENERGY_BURDEN_FIELD_NAME = "Energy burden"
|
||||
|
||||
# Constants for output
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.REVISED_ENERGY_BURDEN_FIELD_NAME,
|
||||
]
|
||||
|
||||
self.raw_df: pd.DataFrame
|
||||
self.output_df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting data download.")
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=self.DOE_FILE_URL,
|
||||
download_path=self.get_tmp_path(),
|
||||
unzipped_file_path=self.get_tmp_path() / "doe_energy_burden",
|
||||
)
|
||||
|
||||
self.raw_df = pd.read_csv(
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting DOE Energy Burden transforms.")
|
||||
raw_df: pd.DataFrame = pd.read_csv(
|
||||
filepath_or_buffer=self.get_tmp_path()
|
||||
/ "doe_energy_burden"
|
||||
/ "DOE_LEAD_AMI_TRACT_2018_ALL.csv",
|
||||
# The following need to remain as strings for all of their digits, not get converted to numbers.
|
||||
dtype={
|
||||
self.TRACT_INPUT_COLUMN_NAME: "string",
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME: "string",
|
||||
},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
|
||||
output_df = self.raw_df.rename(
|
||||
logger.info("Renaming columns and ensuring output format is correct")
|
||||
output_df = raw_df.rename(
|
||||
columns={
|
||||
self.INPUT_ENERGY_BURDEN_FIELD_NAME: self.REVISED_ENERGY_BURDEN_FIELD_NAME,
|
||||
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -75,7 +60,4 @@ class DOEEnergyBurden(ExtractTransformLoad):
|
|||
def load(self) -> None:
|
||||
logger.info("Saving DOE Energy Burden CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.output_df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
||||
super().load()
|
||||
|
|
|
@ -15,10 +15,16 @@ class NationalRiskIndexETL(ExtractTransformLoad):
|
|||
"""ETL class for the FEMA National Risk Index dataset"""
|
||||
|
||||
NAME = "national_risk_index"
|
||||
LAST_UPDATED_YEAR = 2020
|
||||
SOURCE_URL = "https://hazards.fema.gov/nri/Content/StaticDocuments/DataDownload//NRI_Table_CensusTracts/NRI_Table_CensusTracts.zip"
|
||||
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
|
||||
|
||||
# Output score variables (values set on datasets.yml) for linting purposes
|
||||
RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME: str
|
||||
EXPECTED_BUILDING_LOSS_RATE_FIELD_NAME: str
|
||||
EXPECTED_AGRICULTURE_LOSS_RATE_FIELD_NAME: str
|
||||
EXPECTED_POPULATION_LOSS_RATE_FIELD_NAME: str
|
||||
CONTAINS_AGRIVALUE: str
|
||||
|
||||
## TEMPORARILY HERE
|
||||
## To get this value up in time for launch, we've hard coded it. We would like
|
||||
## to, in the future, have this pull the 10th percentile (or nth percentile)
|
||||
|
@ -27,54 +33,31 @@ class NationalRiskIndexETL(ExtractTransformLoad):
|
|||
AGRIVALUE_LOWER_BOUND = 408000
|
||||
|
||||
def __init__(self):
|
||||
# define the full path for the input CSV file
|
||||
self.INPUT_CSV = self.get_tmp_path() / "NRI_Table_CensusTracts.csv"
|
||||
|
||||
# this is the main dataframe
|
||||
self.df: pd.DataFrame
|
||||
|
||||
# Start dataset-specific vars here
|
||||
self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_INPUT_FIELD_NAME = (
|
||||
"EAL_SCORE"
|
||||
)
|
||||
|
||||
self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME = (
|
||||
"FEMA Risk Index Expected Annual Loss Score"
|
||||
)
|
||||
|
||||
self.EXPECTED_ANNUAL_LOSS_BUILDING_VALUE_INPUT_FIELD_NAME = "EAL_VALB"
|
||||
|
||||
self.EXPECTED_ANNUAL_LOSS_AGRICULTURAL_VALUE_INPUT_FIELD_NAME = (
|
||||
"EAL_VALA"
|
||||
)
|
||||
self.EXPECTED_ANNUAL_LOSS_POPULATION_VALUE_INPUT_FIELD_NAME = "EAL_VALP"
|
||||
|
||||
self.AGRICULTURAL_VALUE_INPUT_FIELD_NAME = "AGRIVALUE"
|
||||
self.POPULATION_INPUT_FIELD_NAME = "POPULATION"
|
||||
self.BUILDING_VALUE_INPUT_FIELD_NAME = "BUILDVALUE"
|
||||
|
||||
self.EXPECTED_BUILDING_LOSS_RATE_FIELD_NAME = (
|
||||
"Expected building loss rate (Natural Hazards Risk Index)"
|
||||
)
|
||||
self.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD_NAME = (
|
||||
"Expected agricultural loss rate (Natural Hazards Risk Index)"
|
||||
)
|
||||
self.EXPECTED_POPULATION_LOSS_RATE_FIELD_NAME = (
|
||||
"Expected population loss rate (Natural Hazards Risk Index)"
|
||||
)
|
||||
self.CONTAINS_AGRIVALUE = "Contains agricultural value"
|
||||
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME,
|
||||
self.EXPECTED_POPULATION_LOSS_RATE_FIELD_NAME,
|
||||
self.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD_NAME,
|
||||
self.EXPECTED_BUILDING_LOSS_RATE_FIELD_NAME,
|
||||
self.CONTAINS_AGRIVALUE,
|
||||
]
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
"""Unzips NRI dataset from the FEMA data source and writes the files
|
||||
to the temporary data folder for use in the transform() method
|
||||
"""
|
||||
logger.info("Downloading 405MB National Risk Index Data")
|
||||
|
||||
super().extract(
|
||||
source_url=self.SOURCE_URL,
|
||||
extract_path=self.get_tmp_path(),
|
||||
|
@ -90,19 +73,18 @@ class NationalRiskIndexETL(ExtractTransformLoad):
|
|||
"""
|
||||
logger.info("Transforming National Risk Index Data")
|
||||
|
||||
NRI_TRACT_COL = "TRACTFIPS" # Census Tract Column in NRI data
|
||||
|
||||
# read in the unzipped csv from NRI data source then rename the
|
||||
# Census Tract column for merging
|
||||
df_nri: pd.DataFrame = pd.read_csv(
|
||||
self.INPUT_CSV,
|
||||
dtype={NRI_TRACT_COL: "string"},
|
||||
dtype={self.INPUT_GEOID_TRACT_FIELD_NAME: "string"},
|
||||
na_values=["None"],
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
df_nri.rename(
|
||||
columns={
|
||||
NRI_TRACT_COL: self.GEOID_TRACT_FIELD_NAME,
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_INPUT_FIELD_NAME: self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME,
|
||||
},
|
||||
inplace=True,
|
||||
|
@ -170,6 +152,7 @@ class NationalRiskIndexETL(ExtractTransformLoad):
|
|||
].clip(
|
||||
lower=self.AGRIVALUE_LOWER_BOUND
|
||||
)
|
||||
|
||||
# This produces a boolean that is True in the case of non-zero agricultural value
|
||||
df_nri[self.CONTAINS_AGRIVALUE] = (
|
||||
df_nri[self.AGRICULTURAL_VALUE_INPUT_FIELD_NAME] > 0
|
||||
|
@ -185,6 +168,7 @@ class NationalRiskIndexETL(ExtractTransformLoad):
|
|||
# Note: `round` is smart enough to only apply to float columns.
|
||||
df_nri = df_nri.round(10)
|
||||
|
||||
# Assign the final df to the class' output_df for the load method
|
||||
self.output_df = df_nri
|
||||
|
||||
def load(self) -> None:
|
||||
|
|
|
@ -81,13 +81,13 @@ class TribalETL(ExtractTransformLoad):
|
|||
bia_aian_supplemental_df = gpd.read_file(tribal_geojson_path)
|
||||
|
||||
bia_aian_supplemental_df.drop(
|
||||
["OBJECTID", "GISAcres", "Source", "Shape_Length", "Shape_Area"],
|
||||
["GISAcres", "Source", "Shape_Length", "Shape_Area"],
|
||||
axis=1,
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
bia_aian_supplemental_df.rename(
|
||||
columns={"Land_Area_": "landAreaName"},
|
||||
columns={"OBJECTID": "tribalId", "Land_Area_": "landAreaName"},
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue