Added Census Tract Aggregated Micro-data from EPA Risk-Screening Environmental Indicators (RSEI) model (#1101)

* added initial source code - todo is comparison tool

* added values

* rename fields

* check geoid

* added black

* added revisions

* added clean up to comments

* more comments

* formatting

* cleanup and address PR feedback

* fix changes

* final path changes

* style

* PR feedback

* added final PR comment

* fix flake 8

* add revisions
This commit is contained in:
Saran Ahluwalia 2022-01-14 13:50:49 -05:00 committed by GitHub
parent a98ea35f74
commit 95a14adb35
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 204 additions and 0 deletions

View file

@ -89,6 +89,11 @@ DATASET_LIST = [
"module_dir": "hud_recap", "module_dir": "hud_recap",
"class_name": "HudRecapETL", "class_name": "HudRecapETL",
}, },
{
"name": "epa_rsei_aggregate",
"module_dir": "epa_rsei_aggregate",
"class_name": "EPARiskScreeningEnvironmentalIndicatorsETL",
},
{ {
"name": "energy_definition_alternative_draft", "name": "energy_definition_alternative_draft",
"module_dir": "energy_definition_alternative_draft", "module_dir": "energy_definition_alternative_draft",

View file

@ -0,0 +1,160 @@
from pathlib import Path
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger, unzip_file_from_url
logger = get_module_logger(__name__)
class EPARiskScreeningEnvironmentalIndicatorsETL(ExtractTransformLoad):
"""Class for 2019 Census Tract RSEI Aggregated micro-data
Data source overview: Page 20 in this document:
https://www.epa.gov/sites/default/files/2017-01/documents/rsei-documentation-geographic-microdata-v235.pdf
Disaggregated and aggregated datasets for 2019 is documented here:
https://github.com/usds/justice40-tool/issues/1070#issuecomment-1005604014
"""
def __init__(self):
self.AGGREGATED_RSEI_SCORE_FILE_URL = "http://abt-rsei.s3.amazonaws.com/microdata2019/census_agg/CensusMicroTracts2019_2019_aggregated.zip"
self.OUTPUT_PATH: Path = (
self.DATA_PATH / "dataset" / "epa_rsei_aggregated"
)
self.EPA_RSEI_SCORE_THRESHOLD_CUTOFF = 0.75
self.TRACT_INPUT_COLUMN_NAME = "GEOID10"
self.NUMBER_FACILITIES_INPUT_FIELD = "NUMFACS"
self.NUMBER_RELEASES_INPUT_FIELD = "NUMRELEASES"
self.NUMBER_CHEMICALS_INPUT_FIELD = "NUMCHEMS"
self.AVERAGE_TOXICITY_INPUT_FIELD = "TOXCONC"
self.SCORE_INPUT_FIELD = "SCORE"
self.POPULATION_INPUT_FIELD = "POP"
self.CSCORE_INPUT_FIELD = "CSCORE"
self.NCSCORE_INPUT_FIELD = "NSCORE"
# References to the columns that will be output
self.COLUMNS_TO_KEEP = [
self.GEOID_TRACT_FIELD_NAME,
field_names.EPA_RSEI_NUMBER_FACILITIES_FIELD,
field_names.EPA_RSEI_NUMBER_RELEASES_FIELD,
field_names.EPA_RSEI_NUMBER_CHEMICALS_FIELD,
field_names.EPA_RSEI_AVERAGE_TOXICITY_FIELD,
field_names.EPA_RSEI_SCORE_FIELD,
field_names.EPA_RSEI_CSCORE_FIELD,
field_names.EPA_RSEI_NCSCORE_FIELD,
field_names.EPA_RSEI_POPULATION_FIELD,
field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD,
field_names.EPA_RSEI_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX,
]
self.df: pd.DataFrame
def extract(self) -> None:
logger.info("Starting 2.5 MB data download.")
# the column headers from the above dataset are actually a census tract's data at this point
# We will use this data structure later to specify the column names
input_columns = [
self.TRACT_INPUT_COLUMN_NAME,
self.NUMBER_FACILITIES_INPUT_FIELD,
self.NUMBER_RELEASES_INPUT_FIELD,
self.NUMBER_CHEMICALS_INPUT_FIELD,
self.AVERAGE_TOXICITY_INPUT_FIELD,
self.SCORE_INPUT_FIELD,
self.POPULATION_INPUT_FIELD,
self.CSCORE_INPUT_FIELD,
self.NCSCORE_INPUT_FIELD,
]
unzip_file_from_url(
file_url=self.AGGREGATED_RSEI_SCORE_FILE_URL,
download_path=self.TMP_PATH,
unzipped_file_path=self.TMP_PATH / "epa_rsei_aggregated",
)
self.df = pd.read_csv(
filepath_or_buffer=self.TMP_PATH
/ "epa_rsei_aggregated"
/ "CensusMicroTracts2019_2019_aggregated.csv",
# The following need to remain as strings for all of their digits, not get
# converted to numbers.
low_memory=False,
names=input_columns,
)
def transform(self) -> None:
logger.info("Starting transforms.")
score_columns = [x for x in self.df.columns if "SCORE" in x]
# coerce dataframe type to perform correct next steps
self.df[score_columns] = self.df[score_columns].astype(float)
self.df.rename(
columns={
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
self.NUMBER_FACILITIES_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_FACILITIES_FIELD,
self.NUMBER_RELEASES_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_RELEASES_FIELD,
self.NUMBER_CHEMICALS_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_CHEMICALS_FIELD,
self.AVERAGE_TOXICITY_INPUT_FIELD: field_names.EPA_RSEI_AVERAGE_TOXICITY_FIELD,
self.SCORE_INPUT_FIELD: field_names.EPA_RSEI_SCORE_FIELD,
self.CSCORE_INPUT_FIELD: field_names.EPA_RSEI_CSCORE_FIELD,
self.NCSCORE_INPUT_FIELD: field_names.EPA_RSEI_NCSCORE_FIELD,
self.POPULATION_INPUT_FIELD: field_names.EPA_RSEI_POPULATION_FIELD,
},
inplace=True,
)
# Please note this: https://www.epa.gov/rsei/understanding-rsei-results#what
# Section: "What does a high RSEI Score mean?"
# This was created for the sole purpose to be used in the current
# iteration of Score L
self.df[
field_names.EPA_RSEI_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
] = self.df[field_names.EPA_RSEI_SCORE_FIELD].rank(
ascending=True,
pct=True,
)
# This threshold was arbitrarily chosen.
# It would make sense to enrich this with facilities, industries, or chemical
# that would enable some additional form of sub-stratification when examining
# different percentile ranges that are derived above.
self.df[field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD] = (
self.df[
field_names.EPA_RSEI_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
]
>= self.EPA_RSEI_SCORE_THRESHOLD_CUTOFF
)
expected_census_tract_field_length = 11
self.df[self.GEOID_TRACT_FIELD_NAME] = (
self.df[self.GEOID_TRACT_FIELD_NAME]
.astype(str)
.apply(lambda x: x.zfill(expected_census_tract_field_length))
)
if len(self.df[self.GEOID_TRACT_FIELD_NAME].str.len().unique()) != 1:
raise ValueError(
f"GEOID Tract must be length of {expected_census_tract_field_length}"
)
def validate(self) -> None:
logger.info("Validating data.")
pass
def load(self) -> None:
logger.info("Saving CSV")
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
self.df[self.COLUMNS_TO_KEEP].to_csv(
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
)

View file

@ -333,6 +333,25 @@
"michigan_ejscreen_df.head()" "michigan_ejscreen_df.head()"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"id": "b39342aa",
"metadata": {},
"outputs": [],
"source": [
"# Load EPA RSEI EJSCREEN\n",
"epa_rsei_aggregate_data_path = (\n",
" DATA_DIR / \"dataset\" / \"epa_rsei_aggregated\" / \"usa.csv\"\n",
")\n",
"epa_rsei_aggregate_df = pd.read_csv(\n",
" epa_rsei_aggregate_data_path,\n",
" dtype={ExtractTransformLoad.GEOID_TRACT_FIELD_NAME: \"string\"},\n",
")\n",
"\n",
"epa_rsei_aggregate_df.head()"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
@ -348,6 +367,7 @@
" calenviroscreen_df,\n", " calenviroscreen_df,\n",
" persistent_poverty_df,\n", " persistent_poverty_df,\n",
" mapping_inequality_df,\n", " mapping_inequality_df,\n",
" epa_rsei_aggregate_df,\n",
" maryland_ejscreen_df,\n", " maryland_ejscreen_df,\n",
" energy_definition_alternative_draft_df,\n", " energy_definition_alternative_draft_df,\n",
" michigan_ejscreen_df\n", " michigan_ejscreen_df\n",
@ -472,6 +492,10 @@
" priority_communities_field=\"calenviroscreen_priority_community\",\n", " priority_communities_field=\"calenviroscreen_priority_community\",\n",
" ),\n", " ),\n",
" Index(\n", " Index(\n",
" method_name=\"EPA RSEI Aggregate Microdata\",\n",
" priority_communities_field=field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD\n",
" ), \n",
" Index(\n",
" method_name=\"Persistent Poverty\",\n", " method_name=\"Persistent Poverty\",\n",
" priority_communities_field=PERSISTENT_POVERTY_TRACT_LEVEL_FIELD,\n", " priority_communities_field=PERSISTENT_POVERTY_TRACT_LEVEL_FIELD,\n",
" ),\n", " ),\n",

View file

@ -155,6 +155,21 @@ CENSUS_POVERTY_LESS_THAN_100_FPL_FIELD_2010 = (
"Percent of individuals less than 100% Federal Poverty Line in 2010" "Percent of individuals less than 100% Federal Poverty Line in 2010"
) )
# RSEI Aggregated Micro-data
EPA_RSEI_NUMBER_FACILITIES_FIELD = "Number of facilities affecting the tract"
EPA_RSEI_NUMBER_RELEASES_FIELD = "Number of releases affecting the tract"
EPA_RSEI_NUMBER_CHEMICALS_FIELD = "Number of chemicals affecting the tract"
EPA_RSEI_AVERAGE_TOXICITY_FIELD = (
"Average toxicity-weighted concentration of the cells in the tract"
)
EPA_RSEI_SCORE_FIELD = "RSEI Risk Score"
EPA_RSEI_CSCORE_FIELD = "RSEI Risk Score (Cancer toxicity weights)"
EPA_RSEI_NCSCORE_FIELD = "RSEI Risk Score (Noncancer toxicity weights)"
EPA_RSEI_POPULATION_FIELD = "Sum of the population of the cells in the tract"
EPA_RSEI_SCORE_THRESHOLD_FIELD = (
"At or above 75 for overall percentile for the RSEI score"
)
# Combined fields that merge island areas and states data # Combined fields that merge island areas and states data
COMBINED_CENSUS_TOTAL_POPULATION_2010 = ( COMBINED_CENSUS_TOTAL_POPULATION_2010 = (
"Total population in 2009 (island areas) and 2019 (states and PR)" "Total population in 2009 (island areas) and 2019 (states and PR)"