mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 17:44:20 -08:00
Added Census Tract Aggregated Micro-data from EPA Risk-Screening Environmental Indicators (RSEI) model (#1101)
* added initial source code - todo is comparison tool * added values * rename fields * check geoid * added black * added revisions * added clean up to comments * more comments * formatting * cleanup and address PR feedback * fix changes * final path changes * style * PR feedback * added final PR comment * fix flake 8 * add revisions
This commit is contained in:
parent
a98ea35f74
commit
95a14adb35
6 changed files with 204 additions and 0 deletions
|
@ -89,6 +89,11 @@ DATASET_LIST = [
|
|||
"module_dir": "hud_recap",
|
||||
"class_name": "HudRecapETL",
|
||||
},
|
||||
{
|
||||
"name": "epa_rsei_aggregate",
|
||||
"module_dir": "epa_rsei_aggregate",
|
||||
"class_name": "EPARiskScreeningEnvironmentalIndicatorsETL",
|
||||
},
|
||||
{
|
||||
"name": "energy_definition_alternative_draft",
|
||||
"module_dir": "energy_definition_alternative_draft",
|
||||
|
|
|
@ -0,0 +1,160 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import get_module_logger, unzip_file_from_url
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class EPARiskScreeningEnvironmentalIndicatorsETL(ExtractTransformLoad):
|
||||
"""Class for 2019 Census Tract RSEI Aggregated micro-data
|
||||
|
||||
Data source overview: Page 20 in this document:
|
||||
https://www.epa.gov/sites/default/files/2017-01/documents/rsei-documentation-geographic-microdata-v235.pdf
|
||||
|
||||
Disaggregated and aggregated datasets for 2019 is documented here:
|
||||
https://github.com/usds/justice40-tool/issues/1070#issuecomment-1005604014
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.AGGREGATED_RSEI_SCORE_FILE_URL = "http://abt-rsei.s3.amazonaws.com/microdata2019/census_agg/CensusMicroTracts2019_2019_aggregated.zip"
|
||||
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH / "dataset" / "epa_rsei_aggregated"
|
||||
)
|
||||
self.EPA_RSEI_SCORE_THRESHOLD_CUTOFF = 0.75
|
||||
self.TRACT_INPUT_COLUMN_NAME = "GEOID10"
|
||||
self.NUMBER_FACILITIES_INPUT_FIELD = "NUMFACS"
|
||||
self.NUMBER_RELEASES_INPUT_FIELD = "NUMRELEASES"
|
||||
self.NUMBER_CHEMICALS_INPUT_FIELD = "NUMCHEMS"
|
||||
self.AVERAGE_TOXICITY_INPUT_FIELD = "TOXCONC"
|
||||
self.SCORE_INPUT_FIELD = "SCORE"
|
||||
self.POPULATION_INPUT_FIELD = "POP"
|
||||
self.CSCORE_INPUT_FIELD = "CSCORE"
|
||||
self.NCSCORE_INPUT_FIELD = "NSCORE"
|
||||
|
||||
# References to the columns that will be output
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
field_names.EPA_RSEI_NUMBER_FACILITIES_FIELD,
|
||||
field_names.EPA_RSEI_NUMBER_RELEASES_FIELD,
|
||||
field_names.EPA_RSEI_NUMBER_CHEMICALS_FIELD,
|
||||
field_names.EPA_RSEI_AVERAGE_TOXICITY_FIELD,
|
||||
field_names.EPA_RSEI_SCORE_FIELD,
|
||||
field_names.EPA_RSEI_CSCORE_FIELD,
|
||||
field_names.EPA_RSEI_NCSCORE_FIELD,
|
||||
field_names.EPA_RSEI_POPULATION_FIELD,
|
||||
field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD,
|
||||
field_names.EPA_RSEI_SCORE_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
]
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting 2.5 MB data download.")
|
||||
|
||||
# the column headers from the above dataset are actually a census tract's data at this point
|
||||
# We will use this data structure later to specify the column names
|
||||
input_columns = [
|
||||
self.TRACT_INPUT_COLUMN_NAME,
|
||||
self.NUMBER_FACILITIES_INPUT_FIELD,
|
||||
self.NUMBER_RELEASES_INPUT_FIELD,
|
||||
self.NUMBER_CHEMICALS_INPUT_FIELD,
|
||||
self.AVERAGE_TOXICITY_INPUT_FIELD,
|
||||
self.SCORE_INPUT_FIELD,
|
||||
self.POPULATION_INPUT_FIELD,
|
||||
self.CSCORE_INPUT_FIELD,
|
||||
self.NCSCORE_INPUT_FIELD,
|
||||
]
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=self.AGGREGATED_RSEI_SCORE_FILE_URL,
|
||||
download_path=self.TMP_PATH,
|
||||
unzipped_file_path=self.TMP_PATH / "epa_rsei_aggregated",
|
||||
)
|
||||
|
||||
self.df = pd.read_csv(
|
||||
filepath_or_buffer=self.TMP_PATH
|
||||
/ "epa_rsei_aggregated"
|
||||
/ "CensusMicroTracts2019_2019_aggregated.csv",
|
||||
# The following need to remain as strings for all of their digits, not get
|
||||
# converted to numbers.
|
||||
low_memory=False,
|
||||
names=input_columns,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
|
||||
score_columns = [x for x in self.df.columns if "SCORE" in x]
|
||||
|
||||
# coerce dataframe type to perform correct next steps
|
||||
self.df[score_columns] = self.df[score_columns].astype(float)
|
||||
|
||||
self.df.rename(
|
||||
columns={
|
||||
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
self.NUMBER_FACILITIES_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_FACILITIES_FIELD,
|
||||
self.NUMBER_RELEASES_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_RELEASES_FIELD,
|
||||
self.NUMBER_CHEMICALS_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_CHEMICALS_FIELD,
|
||||
self.AVERAGE_TOXICITY_INPUT_FIELD: field_names.EPA_RSEI_AVERAGE_TOXICITY_FIELD,
|
||||
self.SCORE_INPUT_FIELD: field_names.EPA_RSEI_SCORE_FIELD,
|
||||
self.CSCORE_INPUT_FIELD: field_names.EPA_RSEI_CSCORE_FIELD,
|
||||
self.NCSCORE_INPUT_FIELD: field_names.EPA_RSEI_NCSCORE_FIELD,
|
||||
self.POPULATION_INPUT_FIELD: field_names.EPA_RSEI_POPULATION_FIELD,
|
||||
},
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
# Please note this: https://www.epa.gov/rsei/understanding-rsei-results#what
|
||||
# Section: "What does a high RSEI Score mean?"
|
||||
# This was created for the sole purpose to be used in the current
|
||||
# iteration of Score L
|
||||
self.df[
|
||||
field_names.EPA_RSEI_SCORE_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
] = self.df[field_names.EPA_RSEI_SCORE_FIELD].rank(
|
||||
ascending=True,
|
||||
pct=True,
|
||||
)
|
||||
|
||||
# This threshold was arbitrarily chosen.
|
||||
# It would make sense to enrich this with facilities, industries, or chemical
|
||||
# that would enable some additional form of sub-stratification when examining
|
||||
# different percentile ranges that are derived above.
|
||||
self.df[field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD] = (
|
||||
self.df[
|
||||
field_names.EPA_RSEI_SCORE_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX
|
||||
]
|
||||
>= self.EPA_RSEI_SCORE_THRESHOLD_CUTOFF
|
||||
)
|
||||
|
||||
expected_census_tract_field_length = 11
|
||||
self.df[self.GEOID_TRACT_FIELD_NAME] = (
|
||||
self.df[self.GEOID_TRACT_FIELD_NAME]
|
||||
.astype(str)
|
||||
.apply(lambda x: x.zfill(expected_census_tract_field_length))
|
||||
)
|
||||
|
||||
if len(self.df[self.GEOID_TRACT_FIELD_NAME].str.len().unique()) != 1:
|
||||
raise ValueError(
|
||||
f"GEOID Tract must be length of {expected_census_tract_field_length}"
|
||||
)
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating data.")
|
||||
|
||||
pass
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
|
@ -333,6 +333,25 @@
|
|||
"michigan_ejscreen_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b39342aa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load EPA RSEI EJSCREEN\n",
|
||||
"epa_rsei_aggregate_data_path = (\n",
|
||||
" DATA_DIR / \"dataset\" / \"epa_rsei_aggregated\" / \"usa.csv\"\n",
|
||||
")\n",
|
||||
"epa_rsei_aggregate_df = pd.read_csv(\n",
|
||||
" epa_rsei_aggregate_data_path,\n",
|
||||
" dtype={ExtractTransformLoad.GEOID_TRACT_FIELD_NAME: \"string\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"epa_rsei_aggregate_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -348,6 +367,7 @@
|
|||
" calenviroscreen_df,\n",
|
||||
" persistent_poverty_df,\n",
|
||||
" mapping_inequality_df,\n",
|
||||
" epa_rsei_aggregate_df,\n",
|
||||
" maryland_ejscreen_df,\n",
|
||||
" energy_definition_alternative_draft_df,\n",
|
||||
" michigan_ejscreen_df\n",
|
||||
|
@ -472,6 +492,10 @@
|
|||
" priority_communities_field=\"calenviroscreen_priority_community\",\n",
|
||||
" ),\n",
|
||||
" Index(\n",
|
||||
" method_name=\"EPA RSEI Aggregate Microdata\",\n",
|
||||
" priority_communities_field=field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD\n",
|
||||
" ), \n",
|
||||
" Index(\n",
|
||||
" method_name=\"Persistent Poverty\",\n",
|
||||
" priority_communities_field=PERSISTENT_POVERTY_TRACT_LEVEL_FIELD,\n",
|
||||
" ),\n",
|
||||
|
|
|
@ -155,6 +155,21 @@ CENSUS_POVERTY_LESS_THAN_100_FPL_FIELD_2010 = (
|
|||
"Percent of individuals less than 100% Federal Poverty Line in 2010"
|
||||
)
|
||||
|
||||
# RSEI Aggregated Micro-data
|
||||
EPA_RSEI_NUMBER_FACILITIES_FIELD = "Number of facilities affecting the tract"
|
||||
EPA_RSEI_NUMBER_RELEASES_FIELD = "Number of releases affecting the tract"
|
||||
EPA_RSEI_NUMBER_CHEMICALS_FIELD = "Number of chemicals affecting the tract"
|
||||
EPA_RSEI_AVERAGE_TOXICITY_FIELD = (
|
||||
"Average toxicity-weighted concentration of the cells in the tract"
|
||||
)
|
||||
EPA_RSEI_SCORE_FIELD = "RSEI Risk Score"
|
||||
EPA_RSEI_CSCORE_FIELD = "RSEI Risk Score (Cancer toxicity weights)"
|
||||
EPA_RSEI_NCSCORE_FIELD = "RSEI Risk Score (Noncancer toxicity weights)"
|
||||
EPA_RSEI_POPULATION_FIELD = "Sum of the population of the cells in the tract"
|
||||
EPA_RSEI_SCORE_THRESHOLD_FIELD = (
|
||||
"At or above 75 for overall percentile for the RSEI score"
|
||||
)
|
||||
|
||||
# Combined fields that merge island areas and states data
|
||||
COMBINED_CENSUS_TOTAL_POPULATION_2010 = (
|
||||
"Total population in 2009 (island areas) and 2019 (states and PR)"
|
||||
|
|
Loading…
Add table
Reference in a new issue