mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 08:21:16 -07:00
Add tests for all non-census sources (#1899)
* Refactor CDC life-expectancy (1554) * Update to new tract list (#1554) * Adjust for tests (#1848) * Add tests for cdc_places (#1848) * Add EJScreen tests (#1848) * Add tests for HUD housing (#1848) * Add tests for GeoCorr (#1848) * Add persistent poverty tests (#1848) * Update for sources without zips, for new validation (#1848) * Update tests for new multi-CSV but (#1848) Lucas updated the CDC life expectancy data to handle a bug where two states are missing from the US Overall download. Since virtually none of our other ETL classes download multiple CSVs directly like this, it required a pretty invasive new mocking strategy. * Add basic tests for nature deprived (#1848) * Add wildfire tests (#1848) * Add flood risk tests (#1848) * Add DOT travel tests (#1848) * Add historic redlining tests (#1848) * Add tests for ME and WI (#1848) * Update now that validation exists (#1848) * Adjust for validation (#1848) * Add health insurance back to cdc places (#1848) Ooops * Update tests with new field (#1848) * Test for blank tract removal (#1848) * Add tracts for clipping behavior * Test clipping and zfill behavior (#1848) * Fix bad test assumption (#1848) * Simplify class, add test for tract padding (#1848) * Fix percentage inversion, update tests (#1848) Looking through the transformations, I noticed that we were subtracting a percentage that is usually between 0-100 from 1 instead of 100, and so were endind up with some surprising results. Confirmed with lucasmbrown-usds * Add note about first street data (#1848)
This commit is contained in:
parent
4d02525bb3
commit
876655d2b2
88 changed files with 2032 additions and 178 deletions
|
@ -2,7 +2,7 @@ import functools
|
|||
import pandas as pd
|
||||
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.base import ExtractTransformLoad, ValidGeoLevel
|
||||
from data_pipeline.utils import (
|
||||
get_module_logger,
|
||||
unzip_file_from_url,
|
||||
|
@ -19,6 +19,10 @@ class PersistentPovertyETL(ExtractTransformLoad):
|
|||
Codebook: `https://s4.ad.brown.edu/Projects/Diversity/Researcher/LTBDDload/Dfiles/codebooks.pdf`.
|
||||
"""
|
||||
|
||||
NAME = "persistent_poverty"
|
||||
GEO_LEVEL: ValidGeoLevel = ValidGeoLevel.CENSUS_TRACT
|
||||
PUERTO_RICO_EXPECTED_IN_DATA = False
|
||||
|
||||
def __init__(self):
|
||||
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "persistent_poverty"
|
||||
|
||||
|
@ -75,7 +79,7 @@ class PersistentPovertyETL(ExtractTransformLoad):
|
|||
def extract(self) -> None:
|
||||
logger.info("Starting to download 86MB persistent poverty file.")
|
||||
|
||||
unzipped_file_path = self.get_tmp_path() / "persistent_poverty"
|
||||
unzipped_file_path = self.get_tmp_path()
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
|
@ -155,14 +159,4 @@ class PersistentPovertyETL(ExtractTransformLoad):
|
|||
)
|
||||
)
|
||||
|
||||
self.df = transformed_df
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving persistent poverty data.")
|
||||
|
||||
# mkdir census
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
||||
self.output_df = transformed_df
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue