Ticket 492: Integrate Area Median Income and Poverty measures into ETL (#660)

* Loading AMI and poverty data
This commit is contained in:
Lucas Merrill Brown 2021-09-13 15:36:35 -05:00 committed by GitHub
commit 7d13be7651
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 474 additions and 91 deletions

View file

@ -4,7 +4,6 @@ import censusdata
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
from data_pipeline.utils import get_module_logger
from data_pipeline.config import settings
logger = get_module_logger(__name__)
@ -21,31 +20,38 @@ class CensusACSETL(ExtractTransformLoad):
"Linguistic isolation (total)"
)
self.LINGUISTIC_ISOLATION_FIELDS = [
"C16002_001E", # Estimate!!Total
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
"C16002_001E", # Estimate!!Total
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
]
self.MEDIAN_INCOME_FIELD = "B19013_001E"
self.MEDIAN_INCOME_FIELD_NAME = (
"Median household income in the past 12 months"
)
self.MEDIAN_INCOME_STATE_FIELD_NAME = "Median household income (State)"
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
"Median household income (% of state median household income)"
self.POVERTY_FIELDS = [
"C17002_001E", # Estimate!!Total,
"C17002_002E", # Estimate!!Total!!Under .50
"C17002_003E", # Estimate!!Total!!.50 to .99
"C17002_004E", # Estimate!!Total!!1.00 to 1.24
"C17002_005E", # Estimate!!Total!!1.25 to 1.49
"C17002_006E", # Estimate!!Total!!1.50 to 1.84
"C17002_007E", # Estimate!!Total!!1.85 to 1.99
]
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME = (
"Percent of individuals < 100% Federal Poverty Line"
)
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME = (
"Percent of individuals < 150% Federal Poverty Line"
)
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
"Percent of individuals < 200% Federal Poverty Line"
)
self.STATE_GEOID_FIELD_NAME = "GEOID2"
self.df: pd.DataFrame
self.state_median_income_df: pd.DataFrame
self.STATE_MEDIAN_INCOME_FTP_URL = (
settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/2015_to_2019_state_median_income.zip"
)
self.STATE_MEDIAN_INCOME_FILE_PATH = (
self.TMP_PATH / "2015_to_2019_state_median_income.csv"
)
def _fips_from_censusdata_censusgeo(
self, censusgeo: censusdata.censusgeo
@ -55,11 +61,6 @@ class CensusACSETL(ExtractTransformLoad):
return fips
def extract(self) -> None:
# Extract state median income
super().extract(
self.STATE_MEDIAN_INCOME_FTP_URL,
self.TMP_PATH,
)
dfs = []
for fips in get_state_fips_codes(self.DATA_PATH):
logger.info(
@ -79,7 +80,8 @@ class CensusACSETL(ExtractTransformLoad):
"B23025_003E",
self.MEDIAN_INCOME_FIELD,
]
+ self.LINGUISTIC_ISOLATION_FIELDS,
+ self.LINGUISTIC_ISOLATION_FIELDS
+ self.POVERTY_FIELDS,
)
)
@ -89,12 +91,6 @@ class CensusACSETL(ExtractTransformLoad):
func=self._fips_from_censusdata_censusgeo
)
self.state_median_income_df = pd.read_csv(
# TODO: Replace with reading from S3.
filepath_or_buffer=self.STATE_MEDIAN_INCOME_FILE_PATH,
dtype={self.STATE_GEOID_FIELD_NAME: "string"},
)
def transform(self) -> None:
logger.info("Starting Census ACS Transform")
@ -103,24 +99,6 @@ class CensusACSETL(ExtractTransformLoad):
self.MEDIAN_INCOME_FIELD
]
# TODO: handle null values for CBG median income, which are `-666666666`.
# Join state data on CBG data:
self.df[self.STATE_GEOID_FIELD_NAME] = (
self.df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
)
self.df = self.df.merge(
self.state_median_income_df,
how="left",
on=self.STATE_GEOID_FIELD_NAME,
)
# Calculate the income of the block group as a fraction of the state income:
self.df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
self.df[self.MEDIAN_INCOME_FIELD_NAME]
/ self.df[self.MEDIAN_INCOME_STATE_FIELD_NAME]
)
# Calculate percent unemployment.
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
self.df[self.UNEMPLOYED_FIELD_NAME] = (
@ -145,6 +123,27 @@ class CensusACSETL(ExtractTransformLoad):
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME].describe()
# Calculate percent at different poverty thresholds
self.df[self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME] = (
self.df["C17002_002E"] + self.df["C17002_003E"]
) / self.df["C17002_001E"]
self.df[self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME] = (
self.df["C17002_002E"]
+ self.df["C17002_003E"]
+ self.df["C17002_004E"]
+ self.df["C17002_005E"]
) / self.df["C17002_001E"]
self.df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME] = (
self.df["C17002_002E"]
+ self.df["C17002_003E"]
+ self.df["C17002_004E"]
+ self.df["C17002_005E"]
+ self.df["C17002_006E"]
+ self.df["C17002_007E"]
) / self.df["C17002_001E"]
def load(self) -> None:
logger.info("Saving Census ACS Data")
@ -156,8 +155,9 @@ class CensusACSETL(ExtractTransformLoad):
self.UNEMPLOYED_FIELD_NAME,
self.LINGUISTIC_ISOLATION_FIELD_NAME,
self.MEDIAN_INCOME_FIELD_NAME,
self.MEDIAN_INCOME_STATE_FIELD_NAME,
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME,
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME,
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
]
self.df[columns_to_include].to_csv(