mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 12:31:18 -07:00
Ticket 492: Integrate Area Median Income and Poverty measures into ETL (#660)
* Loading AMI and poverty data
This commit is contained in:
parent
125ea610cc
commit
7d13be7651
12 changed files with 474 additions and 91 deletions
|
@ -4,7 +4,6 @@ import censusdata
|
|||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.config import settings
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
@ -21,31 +20,38 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
"Linguistic isolation (total)"
|
||||
)
|
||||
self.LINGUISTIC_ISOLATION_FIELDS = [
|
||||
"C16002_001E", # Estimate!!Total
|
||||
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
|
||||
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
|
||||
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
|
||||
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
|
||||
"C16002_001E", # Estimate!!Total
|
||||
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
|
||||
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
|
||||
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
|
||||
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
|
||||
]
|
||||
self.MEDIAN_INCOME_FIELD = "B19013_001E"
|
||||
self.MEDIAN_INCOME_FIELD_NAME = (
|
||||
"Median household income in the past 12 months"
|
||||
)
|
||||
self.MEDIAN_INCOME_STATE_FIELD_NAME = "Median household income (State)"
|
||||
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
|
||||
"Median household income (% of state median household income)"
|
||||
self.POVERTY_FIELDS = [
|
||||
"C17002_001E", # Estimate!!Total,
|
||||
"C17002_002E", # Estimate!!Total!!Under .50
|
||||
"C17002_003E", # Estimate!!Total!!.50 to .99
|
||||
"C17002_004E", # Estimate!!Total!!1.00 to 1.24
|
||||
"C17002_005E", # Estimate!!Total!!1.25 to 1.49
|
||||
"C17002_006E", # Estimate!!Total!!1.50 to 1.84
|
||||
"C17002_007E", # Estimate!!Total!!1.85 to 1.99
|
||||
]
|
||||
|
||||
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 100% Federal Poverty Line"
|
||||
)
|
||||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 150% Federal Poverty Line"
|
||||
)
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 200% Federal Poverty Line"
|
||||
)
|
||||
|
||||
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
||||
self.df: pd.DataFrame
|
||||
self.state_median_income_df: pd.DataFrame
|
||||
|
||||
self.STATE_MEDIAN_INCOME_FTP_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/2015_to_2019_state_median_income.zip"
|
||||
)
|
||||
self.STATE_MEDIAN_INCOME_FILE_PATH = (
|
||||
self.TMP_PATH / "2015_to_2019_state_median_income.csv"
|
||||
)
|
||||
|
||||
def _fips_from_censusdata_censusgeo(
|
||||
self, censusgeo: censusdata.censusgeo
|
||||
|
@ -55,11 +61,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
return fips
|
||||
|
||||
def extract(self) -> None:
|
||||
# Extract state median income
|
||||
super().extract(
|
||||
self.STATE_MEDIAN_INCOME_FTP_URL,
|
||||
self.TMP_PATH,
|
||||
)
|
||||
dfs = []
|
||||
for fips in get_state_fips_codes(self.DATA_PATH):
|
||||
logger.info(
|
||||
|
@ -79,7 +80,8 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
"B23025_003E",
|
||||
self.MEDIAN_INCOME_FIELD,
|
||||
]
|
||||
+ self.LINGUISTIC_ISOLATION_FIELDS,
|
||||
+ self.LINGUISTIC_ISOLATION_FIELDS
|
||||
+ self.POVERTY_FIELDS,
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -89,12 +91,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
func=self._fips_from_censusdata_censusgeo
|
||||
)
|
||||
|
||||
self.state_median_income_df = pd.read_csv(
|
||||
# TODO: Replace with reading from S3.
|
||||
filepath_or_buffer=self.STATE_MEDIAN_INCOME_FILE_PATH,
|
||||
dtype={self.STATE_GEOID_FIELD_NAME: "string"},
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting Census ACS Transform")
|
||||
|
||||
|
@ -103,24 +99,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.MEDIAN_INCOME_FIELD
|
||||
]
|
||||
|
||||
# TODO: handle null values for CBG median income, which are `-666666666`.
|
||||
|
||||
# Join state data on CBG data:
|
||||
self.df[self.STATE_GEOID_FIELD_NAME] = (
|
||||
self.df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
|
||||
)
|
||||
self.df = self.df.merge(
|
||||
self.state_median_income_df,
|
||||
how="left",
|
||||
on=self.STATE_GEOID_FIELD_NAME,
|
||||
)
|
||||
|
||||
# Calculate the income of the block group as a fraction of the state income:
|
||||
self.df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
|
||||
self.df[self.MEDIAN_INCOME_FIELD_NAME]
|
||||
/ self.df[self.MEDIAN_INCOME_STATE_FIELD_NAME]
|
||||
)
|
||||
|
||||
# Calculate percent unemployment.
|
||||
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
||||
self.df[self.UNEMPLOYED_FIELD_NAME] = (
|
||||
|
@ -145,6 +123,27 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
|
||||
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME].describe()
|
||||
|
||||
# Calculate percent at different poverty thresholds
|
||||
self.df[self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"] + self.df["C17002_003E"]
|
||||
) / self.df["C17002_001E"]
|
||||
|
||||
self.df[self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"]
|
||||
+ self.df["C17002_003E"]
|
||||
+ self.df["C17002_004E"]
|
||||
+ self.df["C17002_005E"]
|
||||
) / self.df["C17002_001E"]
|
||||
|
||||
self.df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"]
|
||||
+ self.df["C17002_003E"]
|
||||
+ self.df["C17002_004E"]
|
||||
+ self.df["C17002_005E"]
|
||||
+ self.df["C17002_006E"]
|
||||
+ self.df["C17002_007E"]
|
||||
) / self.df["C17002_001E"]
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Census ACS Data")
|
||||
|
||||
|
@ -156,8 +155,9 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.UNEMPLOYED_FIELD_NAME,
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_STATE_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
||||
]
|
||||
|
||||
self.df[columns_to_include].to_csv(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue