mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-24 01:30:16 -07:00
Ticket 492: Integrate Area Median Income and Poverty measures into ETL (#660)
* Loading AMI and poverty data
This commit is contained in:
parent
125ea610cc
commit
7d13be7651
12 changed files with 474 additions and 91 deletions
|
@ -21,6 +21,8 @@ class ExtractTransformLoad:
|
|||
TMP_PATH: Path = DATA_PATH / "tmp"
|
||||
GEOID_FIELD_NAME: str = "GEOID10"
|
||||
GEOID_TRACT_FIELD_NAME: str = "GEOID10_TRACT"
|
||||
# TODO: investigate. Census says there are only 217,740 CBGs in the US.
|
||||
EXPECTED_MAX_CENSUS_BLOCK_GROUPS: int = 220405
|
||||
|
||||
def get_yaml_config(self) -> None:
|
||||
"""Reads the YAML configuration file for the dataset and stores
|
||||
|
|
|
@ -44,6 +44,11 @@ DATASET_LIST = [
|
|||
"module_dir": "national_risk_index",
|
||||
"class_name": "NationalRiskIndexETL",
|
||||
},
|
||||
{
|
||||
"name": "census_acs_median_income",
|
||||
"module_dir": "census_acs_median_income",
|
||||
"class_name": "CensusACSMedianIncomeETL",
|
||||
},
|
||||
]
|
||||
CENSUS_INFO = {
|
||||
"name": "census",
|
||||
|
|
|
@ -39,7 +39,9 @@ DATA_SCORE_TILES_FILE_PATH = DATA_SCORE_TILES_DIR / "usa.csv"
|
|||
SCORE_DOWNLOADABLE_DIR = DATA_SCORE_DIR / "downloadable"
|
||||
SCORE_DOWNLOADABLE_CSV_FILE_PATH = SCORE_DOWNLOADABLE_DIR / "usa.csv"
|
||||
SCORE_DOWNLOADABLE_EXCEL_FILE_PATH = SCORE_DOWNLOADABLE_DIR / "usa.xlsx"
|
||||
SCORE_DOWNLOADABLE_ZIP_FILE_PATH = SCORE_DOWNLOADABLE_DIR / "Screening_Tool_Data.zip"
|
||||
SCORE_DOWNLOADABLE_ZIP_FILE_PATH = (
|
||||
SCORE_DOWNLOADABLE_DIR / "Screening_Tool_Data.zip"
|
||||
)
|
||||
|
||||
# Column subsets
|
||||
CENSUS_COUNTIES_COLUMNS = ["USPS", "GEOID", "NAME"]
|
||||
|
|
|
@ -31,10 +31,28 @@ class ScoreETL(ExtractTransformLoad):
|
|||
"Poverty (Less than 200% of federal poverty line)"
|
||||
)
|
||||
self.HIGH_SCHOOL_FIELD_NAME = "Percent individuals age 25 or over with less than high school degree"
|
||||
self.STATE_MEDIAN_INCOME_FIELD_NAME: str = (
|
||||
"Median household income (State; 2019 inflation-adjusted dollars)"
|
||||
)
|
||||
self.MEDIAN_INCOME_FIELD_NAME = (
|
||||
"Median household income in the past 12 months"
|
||||
)
|
||||
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
|
||||
"Median household income (% of state median household income)"
|
||||
)
|
||||
|
||||
# Note: these variable names are slightly different (missing the word `PERCENT`) than those in the source ETL to avoid pylint's duplicate
|
||||
# code error. - LMB
|
||||
self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 100% Federal Poverty Line"
|
||||
)
|
||||
self.POVERTY_LESS_THAN_150_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 150% Federal Poverty Line"
|
||||
)
|
||||
self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 200% Federal Poverty Line"
|
||||
)
|
||||
|
||||
# There's another aggregation level (a second level of "buckets").
|
||||
self.AGGREGATION_POLLUTION = "Pollution Burden"
|
||||
self.AGGREGATION_POPULATION = "Population Characteristics"
|
||||
|
@ -51,6 +69,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.housing_and_transportation_df: pd.DataFrame
|
||||
self.hud_housing_df: pd.DataFrame
|
||||
self.cdc_places_df: pd.DataFrame
|
||||
self.census_acs_median_incomes_df: pd.DataFrame
|
||||
|
||||
def data_sets(self) -> list:
|
||||
# Define a named tuple that will be used for each data set input.
|
||||
|
@ -112,6 +131,21 @@ class ScoreETL(ExtractTransformLoad):
|
|||
renamed_field="Physical health not good for >=14 days among adults aged >=18 years",
|
||||
bucket=None,
|
||||
),
|
||||
DataSet(
|
||||
input_field=self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME,
|
||||
renamed_field=self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
DataSet(
|
||||
input_field=self.POVERTY_LESS_THAN_150_FPL_FIELD_NAME,
|
||||
renamed_field=self.POVERTY_LESS_THAN_150_FPL_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
DataSet(
|
||||
input_field=self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME,
|
||||
renamed_field=self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
# The following data sets have buckets, because they're used in Score C
|
||||
DataSet(
|
||||
input_field="CANCER",
|
||||
|
@ -211,6 +245,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
]
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Loading data sets from disk.")
|
||||
# EJSCreen csv Load
|
||||
ejscreen_csv = self.DATA_PATH / "dataset" / "ejscreen_2019" / "usa.csv"
|
||||
self.ejscreen_df = pd.read_csv(
|
||||
|
@ -257,6 +292,19 @@ class ScoreETL(ExtractTransformLoad):
|
|||
low_memory=False,
|
||||
)
|
||||
|
||||
# Load census AMI data
|
||||
census_acs_median_incomes_csv = (
|
||||
self.DATA_PATH
|
||||
/ "dataset"
|
||||
/ "census_acs_median_income_2019"
|
||||
/ "usa.csv"
|
||||
)
|
||||
self.census_acs_median_incomes_df = pd.read_csv(
|
||||
census_acs_median_incomes_csv,
|
||||
dtype={self.GEOID_FIELD_NAME: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def _join_cbg_dfs(self, census_block_group_dfs: list) -> pd.DataFrame:
|
||||
logger.info("Joining Census Block Group dataframes")
|
||||
census_block_group_df = functools.reduce(
|
||||
|
@ -275,7 +323,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
f"One of the input CSVs uses {self.GEOID_FIELD_NAME} with a different length."
|
||||
)
|
||||
return census_block_group_df
|
||||
|
||||
|
||||
def _join_tract_dfs(self, census_tract_dfs: list) -> pd.DataFrame:
|
||||
logger.info("Joining Census Tract dataframes")
|
||||
census_tract_df = functools.reduce(
|
||||
|
@ -350,11 +398,10 @@ class ScoreETL(ExtractTransformLoad):
|
|||
# Multiply the "Pollution Burden" score and the "Population Characteristics"
|
||||
# together to produce the cumulative impact score.
|
||||
df["Score C"] = (
|
||||
df[self.AGGREGATION_POLLUTION]
|
||||
* df[self.AGGREGATION_POPULATION]
|
||||
df[self.AGGREGATION_POLLUTION] * df[self.AGGREGATION_POPULATION]
|
||||
)
|
||||
return df
|
||||
|
||||
|
||||
def _add_scores_d_and_e(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
logger.info("Adding Scores D and E")
|
||||
fields_to_use_in_score = [
|
||||
|
@ -434,9 +481,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
| (df["Proximity to RMP sites (percentile)"] > 0.9)
|
||||
| (
|
||||
df[
|
||||
"Current asthma among adults aged >=18 years (percentile)"
|
||||
]
|
||||
df["Current asthma among adults aged >=18 years (percentile)"]
|
||||
> 0.9
|
||||
)
|
||||
| (
|
||||
|
@ -476,15 +521,21 @@ class ScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
return df
|
||||
|
||||
def _add_score_g(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
logger.info("Adding Score G")
|
||||
# TODO: add scoring
|
||||
return df
|
||||
|
||||
# TODO Move a lot of this to the ETL part of the pipeline
|
||||
def _prepare_initial_df(self, data_sets: list) -> pd.DataFrame:
|
||||
logger.info("Preparing initial dataframe")
|
||||
|
||||
# Join all the data sources that use census block groups
|
||||
census_block_group_dfs = [
|
||||
self.ejscreen_df,
|
||||
self.census_df,
|
||||
self.ejscreen_df,
|
||||
self.census_df,
|
||||
self.housing_and_transportation_df,
|
||||
self.census_acs_median_incomes_df,
|
||||
]
|
||||
census_block_group_df = self._join_cbg_dfs(census_block_group_dfs)
|
||||
|
||||
|
@ -504,11 +555,23 @@ class ScoreETL(ExtractTransformLoad):
|
|||
census_tract_df, on=self.GEOID_TRACT_FIELD_NAME
|
||||
)
|
||||
|
||||
# If GEOID10s are read as numbers instead of strings, the initial 0 is dropped,
|
||||
# If GEOID10s are read as numbers instead of strings, the initial 0 is dropped,
|
||||
# and then we get too many CBG rows (one for 012345 and one for 12345).
|
||||
if len(census_block_group_df) > 220333:
|
||||
raise ValueError("Too many rows in the join.")
|
||||
|
||||
if len(census_block_group_df) > self.EXPECTED_MAX_CENSUS_BLOCK_GROUPS:
|
||||
raise ValueError(
|
||||
f"Too many rows in the join: {len(census_block_group_df)}"
|
||||
)
|
||||
|
||||
# Calculate median income variables.
|
||||
# First, calculate the income of the block group as a fraction of the state income.
|
||||
# TODO: handle null values for CBG median income, which are `-666666666`.
|
||||
df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
|
||||
df[self.MEDIAN_INCOME_FIELD_NAME]
|
||||
/ df[self.STATE_MEDIAN_INCOME_FIELD_NAME]
|
||||
)
|
||||
|
||||
# TODO: Calculate the income of the block group as a fraction of the AMI (either state or metropolitan, depending on reference).
|
||||
|
||||
# TODO Refactor to no longer use the data_sets list and do all renaming in ETL step
|
||||
# Rename columns:
|
||||
renaming_dict = {
|
||||
|
@ -537,9 +600,9 @@ class ScoreETL(ExtractTransformLoad):
|
|||
|
||||
# calculate percentiles
|
||||
for data_set in data_sets:
|
||||
df[
|
||||
f"{data_set.renamed_field}{self.PERCENTILE_FIELD_SUFFIX}"
|
||||
] = df[data_set.renamed_field].rank(pct=True)
|
||||
df[f"{data_set.renamed_field}{self.PERCENTILE_FIELD_SUFFIX}"] = df[
|
||||
data_set.renamed_field
|
||||
].rank(pct=True)
|
||||
|
||||
# Do some math:
|
||||
# (
|
||||
|
@ -567,14 +630,14 @@ class ScoreETL(ExtractTransformLoad):
|
|||
df[f"{data_set.renamed_field}{self.MIN_MAX_FIELD_SUFFIX}"] = (
|
||||
df[data_set.renamed_field] - min_value
|
||||
) / (max_value - min_value)
|
||||
|
||||
|
||||
return df
|
||||
|
||||
def transform(self) -> None:
|
||||
## IMPORTANT: THIS METHOD IS CLOSE TO THE LIMIT OF STATEMENTS
|
||||
|
||||
logger.info("Transforming Score Data")
|
||||
|
||||
|
||||
# get data sets list
|
||||
data_sets = self.data_sets()
|
||||
|
||||
|
@ -600,9 +663,10 @@ class ScoreETL(ExtractTransformLoad):
|
|||
# Calculate "Score F", which uses "either/or" thresholds.
|
||||
self.df = self._add_score_f(self.df)
|
||||
|
||||
# Calculate "Score G", which uses AMI and poverty.
|
||||
self.df = self._add_score_g(self.df)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Score CSV")
|
||||
|
||||
# write nationwide csv
|
||||
self.SCORE_CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_csv(self.SCORE_CSV_PATH / "usa.csv", index=False)
|
||||
|
|
|
@ -57,11 +57,15 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
|
||||
def _extract_score(self, score_path: Path) -> pd.DataFrame:
|
||||
logger.info("Reading Score CSV")
|
||||
return pd.read_csv(
|
||||
score_path,
|
||||
dtype={"GEOID10": "string", "Total population": "int64"},
|
||||
df = pd.read_csv(score_path, dtype={"GEOID10": "string"})
|
||||
|
||||
# Convert total population to an int:
|
||||
df["Total population"] = df["Total population"].astype(
|
||||
int, errors="ignore"
|
||||
)
|
||||
|
||||
return df
|
||||
|
||||
def _extract_national_cbg(self, national_cbg_path: Path) -> pd.DataFrame:
|
||||
logger.info("Reading national CBG")
|
||||
return pd.read_csv(
|
||||
|
@ -91,18 +95,23 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
constants.DATA_CENSUS_CSV_FILE_PATH
|
||||
)
|
||||
|
||||
def _transform_counties(self, initial_counties_df: pd.DataFrame) -> pd.DataFrame:
|
||||
def _transform_counties(
|
||||
self, initial_counties_df: pd.DataFrame
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Necessary modifications to the counties dataframe
|
||||
"""
|
||||
# Rename some of the columns to prepare for merge
|
||||
new_df = initial_counties_df[constants.CENSUS_COUNTIES_COLUMNS]
|
||||
new_df.rename(
|
||||
columns={"USPS": "State Abbreviation", "NAME": "County Name"}, inplace=True
|
||||
columns={"USPS": "State Abbreviation", "NAME": "County Name"},
|
||||
inplace=True,
|
||||
)
|
||||
return new_df
|
||||
|
||||
def _transform_states(self, initial_states_df: pd.DataFrame) -> pd.DataFrame:
|
||||
def _transform_states(
|
||||
self, initial_states_df: pd.DataFrame
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Necessary modifications to the states dataframe
|
||||
"""
|
||||
|
@ -174,7 +183,9 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
def _create_tile_data(
|
||||
self, score_county_state_merged_df: pd.DataFrame
|
||||
) -> pd.DataFrame:
|
||||
score_tiles = score_county_state_merged_df[constants.TILES_SCORE_COLUMNS]
|
||||
score_tiles = score_county_state_merged_df[
|
||||
constants.TILES_SCORE_COLUMNS
|
||||
]
|
||||
decimals = pd.Series(
|
||||
[constants.TILES_ROUND_NUM_DECIMALS]
|
||||
* len(constants.TILES_SCORE_FLOAT_COLUMNS),
|
||||
|
@ -185,7 +196,9 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
def _create_downloadable_data(
|
||||
self, score_county_state_merged_df: pd.DataFrame
|
||||
) -> pd.DataFrame:
|
||||
return score_county_state_merged_df[constants.DOWNLOADABLE_SCORE_COLUMNS]
|
||||
return score_county_state_merged_df[
|
||||
constants.DOWNLOADABLE_SCORE_COLUMNS
|
||||
]
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Transforming data sources for Score + County CSV")
|
||||
|
@ -206,7 +219,9 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
self.output_downloadable_df = self._create_downloadable_data(
|
||||
output_score_county_state_merged_df
|
||||
)
|
||||
self.output_score_county_state_merged_df = output_score_county_state_merged_df
|
||||
self.output_score_county_state_merged_df = (
|
||||
output_score_county_state_merged_df
|
||||
)
|
||||
|
||||
def _load_score_csv(
|
||||
self, score_county_state_merged: pd.DataFrame, score_csv_path: Path
|
||||
|
|
|
@ -83,7 +83,9 @@ def states_transformed_expected():
|
|||
return pd.DataFrame.from_dict(
|
||||
data={
|
||||
"State Code": pd.Series(["01", "02", "04"], dtype="string"),
|
||||
"State Name": pd.Series(["Alabama", "Alaska", "Arizona"], dtype="object"),
|
||||
"State Name": pd.Series(
|
||||
["Alabama", "Alaska", "Arizona"], dtype="object"
|
||||
),
|
||||
"State Abbreviation": pd.Series(["AL", "AK", "AZ"], dtype="string"),
|
||||
},
|
||||
)
|
||||
|
@ -91,14 +93,18 @@ def states_transformed_expected():
|
|||
|
||||
@pytest.fixture()
|
||||
def score_transformed_expected():
|
||||
return pd.read_pickle(pytest.SNAPSHOT_DIR / "score_transformed_expected.pkl")
|
||||
return pd.read_pickle(
|
||||
pytest.SNAPSHOT_DIR / "score_transformed_expected.pkl"
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def national_cbg_df():
|
||||
return pd.DataFrame.from_dict(
|
||||
data={
|
||||
"GEOID10": pd.Series(["010010201001", "010010201002"], dtype="string"),
|
||||
"GEOID10": pd.Series(
|
||||
["010010201001", "010010201002"], dtype="string"
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
|
@ -115,4 +121,6 @@ def tile_data_expected():
|
|||
|
||||
@pytest.fixture()
|
||||
def downloadable_data_expected():
|
||||
return pd.read_pickle(pytest.SNAPSHOT_DIR / "downloadable_data_expected.pkl")
|
||||
return pd.read_pickle(
|
||||
pytest.SNAPSHOT_DIR / "downloadable_data_expected.pkl"
|
||||
)
|
||||
|
|
|
@ -33,16 +33,22 @@ def test_extract_score(etl, score_data_initial):
|
|||
|
||||
|
||||
# Transform Tests
|
||||
def test_transform_counties(etl, county_data_initial, counties_transformed_expected):
|
||||
def test_transform_counties(
|
||||
etl, county_data_initial, counties_transformed_expected
|
||||
):
|
||||
extracted_counties = etl._extract_counties(county_data_initial)
|
||||
counties_transformed_actual = etl._transform_counties(extracted_counties)
|
||||
pdt.assert_frame_equal(counties_transformed_actual, counties_transformed_expected)
|
||||
pdt.assert_frame_equal(
|
||||
counties_transformed_actual, counties_transformed_expected
|
||||
)
|
||||
|
||||
|
||||
def test_transform_states(etl, state_data_initial, states_transformed_expected):
|
||||
extracted_states = etl._extract_states(state_data_initial)
|
||||
states_transformed_actual = etl._transform_states(extracted_states)
|
||||
pdt.assert_frame_equal(states_transformed_actual, states_transformed_expected)
|
||||
pdt.assert_frame_equal(
|
||||
states_transformed_actual, states_transformed_expected
|
||||
)
|
||||
|
||||
|
||||
def test_transform_score(etl, score_data_initial, score_transformed_expected):
|
||||
|
@ -82,8 +88,12 @@ def test_create_tile_data(etl, score_data_expected, tile_data_expected):
|
|||
)
|
||||
|
||||
|
||||
def test_create_downloadable_data(etl, score_data_expected, downloadable_data_expected):
|
||||
output_downloadable_df_actual = etl._create_downloadable_data(score_data_expected)
|
||||
def test_create_downloadable_data(
|
||||
etl, score_data_expected, downloadable_data_expected
|
||||
):
|
||||
output_downloadable_df_actual = etl._create_downloadable_data(
|
||||
score_data_expected
|
||||
)
|
||||
pdt.assert_frame_equal(
|
||||
output_downloadable_df_actual,
|
||||
downloadable_data_expected,
|
||||
|
@ -101,7 +111,9 @@ def test_load_score_csv(etl, score_data_expected):
|
|||
|
||||
def test_load_tile_csv(etl, tile_data_expected):
|
||||
reload(constants)
|
||||
etl._load_score_csv(tile_data_expected, constants.DATA_SCORE_TILES_FILE_PATH)
|
||||
etl._load_score_csv(
|
||||
tile_data_expected, constants.DATA_SCORE_TILES_FILE_PATH
|
||||
)
|
||||
assert constants.DATA_SCORE_TILES_FILE_PATH.is_file()
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@ import censusdata
|
|||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.config import settings
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
@ -21,31 +20,38 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
"Linguistic isolation (total)"
|
||||
)
|
||||
self.LINGUISTIC_ISOLATION_FIELDS = [
|
||||
"C16002_001E", # Estimate!!Total
|
||||
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
|
||||
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
|
||||
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
|
||||
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
|
||||
"C16002_001E", # Estimate!!Total
|
||||
"C16002_004E", # Estimate!!Total!!Spanish!!Limited English speaking household
|
||||
"C16002_007E", # Estimate!!Total!!Other Indo-European languages!!Limited English speaking household
|
||||
"C16002_010E", # Estimate!!Total!!Asian and Pacific Island languages!!Limited English speaking household
|
||||
"C16002_013E", # Estimate!!Total!!Other languages!!Limited English speaking household
|
||||
]
|
||||
self.MEDIAN_INCOME_FIELD = "B19013_001E"
|
||||
self.MEDIAN_INCOME_FIELD_NAME = (
|
||||
"Median household income in the past 12 months"
|
||||
)
|
||||
self.MEDIAN_INCOME_STATE_FIELD_NAME = "Median household income (State)"
|
||||
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME = (
|
||||
"Median household income (% of state median household income)"
|
||||
self.POVERTY_FIELDS = [
|
||||
"C17002_001E", # Estimate!!Total,
|
||||
"C17002_002E", # Estimate!!Total!!Under .50
|
||||
"C17002_003E", # Estimate!!Total!!.50 to .99
|
||||
"C17002_004E", # Estimate!!Total!!1.00 to 1.24
|
||||
"C17002_005E", # Estimate!!Total!!1.25 to 1.49
|
||||
"C17002_006E", # Estimate!!Total!!1.50 to 1.84
|
||||
"C17002_007E", # Estimate!!Total!!1.85 to 1.99
|
||||
]
|
||||
|
||||
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 100% Federal Poverty Line"
|
||||
)
|
||||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 150% Federal Poverty Line"
|
||||
)
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME = (
|
||||
"Percent of individuals < 200% Federal Poverty Line"
|
||||
)
|
||||
|
||||
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
||||
self.df: pd.DataFrame
|
||||
self.state_median_income_df: pd.DataFrame
|
||||
|
||||
self.STATE_MEDIAN_INCOME_FTP_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/2015_to_2019_state_median_income.zip"
|
||||
)
|
||||
self.STATE_MEDIAN_INCOME_FILE_PATH = (
|
||||
self.TMP_PATH / "2015_to_2019_state_median_income.csv"
|
||||
)
|
||||
|
||||
def _fips_from_censusdata_censusgeo(
|
||||
self, censusgeo: censusdata.censusgeo
|
||||
|
@ -55,11 +61,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
return fips
|
||||
|
||||
def extract(self) -> None:
|
||||
# Extract state median income
|
||||
super().extract(
|
||||
self.STATE_MEDIAN_INCOME_FTP_URL,
|
||||
self.TMP_PATH,
|
||||
)
|
||||
dfs = []
|
||||
for fips in get_state_fips_codes(self.DATA_PATH):
|
||||
logger.info(
|
||||
|
@ -79,7 +80,8 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
"B23025_003E",
|
||||
self.MEDIAN_INCOME_FIELD,
|
||||
]
|
||||
+ self.LINGUISTIC_ISOLATION_FIELDS,
|
||||
+ self.LINGUISTIC_ISOLATION_FIELDS
|
||||
+ self.POVERTY_FIELDS,
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -89,12 +91,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
func=self._fips_from_censusdata_censusgeo
|
||||
)
|
||||
|
||||
self.state_median_income_df = pd.read_csv(
|
||||
# TODO: Replace with reading from S3.
|
||||
filepath_or_buffer=self.STATE_MEDIAN_INCOME_FILE_PATH,
|
||||
dtype={self.STATE_GEOID_FIELD_NAME: "string"},
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting Census ACS Transform")
|
||||
|
||||
|
@ -103,24 +99,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.MEDIAN_INCOME_FIELD
|
||||
]
|
||||
|
||||
# TODO: handle null values for CBG median income, which are `-666666666`.
|
||||
|
||||
# Join state data on CBG data:
|
||||
self.df[self.STATE_GEOID_FIELD_NAME] = (
|
||||
self.df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
|
||||
)
|
||||
self.df = self.df.merge(
|
||||
self.state_median_income_df,
|
||||
how="left",
|
||||
on=self.STATE_GEOID_FIELD_NAME,
|
||||
)
|
||||
|
||||
# Calculate the income of the block group as a fraction of the state income:
|
||||
self.df[self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME] = (
|
||||
self.df[self.MEDIAN_INCOME_FIELD_NAME]
|
||||
/ self.df[self.MEDIAN_INCOME_STATE_FIELD_NAME]
|
||||
)
|
||||
|
||||
# Calculate percent unemployment.
|
||||
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
||||
self.df[self.UNEMPLOYED_FIELD_NAME] = (
|
||||
|
@ -145,6 +123,27 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
|
||||
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME].describe()
|
||||
|
||||
# Calculate percent at different poverty thresholds
|
||||
self.df[self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"] + self.df["C17002_003E"]
|
||||
) / self.df["C17002_001E"]
|
||||
|
||||
self.df[self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"]
|
||||
+ self.df["C17002_003E"]
|
||||
+ self.df["C17002_004E"]
|
||||
+ self.df["C17002_005E"]
|
||||
) / self.df["C17002_001E"]
|
||||
|
||||
self.df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"]
|
||||
+ self.df["C17002_003E"]
|
||||
+ self.df["C17002_004E"]
|
||||
+ self.df["C17002_005E"]
|
||||
+ self.df["C17002_006E"]
|
||||
+ self.df["C17002_007E"]
|
||||
) / self.df["C17002_001E"]
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Census ACS Data")
|
||||
|
||||
|
@ -156,8 +155,9 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.UNEMPLOYED_FIELD_NAME,
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_STATE_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_AS_PERCENT_OF_STATE_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
||||
]
|
||||
|
||||
self.df[columns_to_include].to_csv(
|
||||
|
|
|
@ -0,0 +1,276 @@
|
|||
import json
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import requests
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.utils import unzip_file_from_url
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class CensusACSMedianIncomeETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.ACS_YEAR: int = 2019
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH
|
||||
/ "dataset"
|
||||
/ f"census_acs_median_income_{self.ACS_YEAR}"
|
||||
)
|
||||
|
||||
# Set constants for Geocorr MSAs data.
|
||||
self.PLACE_FIELD_NAME: str = "Census Place Name"
|
||||
self.COUNTY_FIELD_NAME: str = "County Name"
|
||||
self.STATE_ABBREVIATION_FIELD_NAME: str = "State Abbreviation"
|
||||
self.MSA_FIELD_NAME: str = (
|
||||
"Metropolitan/Micropolitan Statistical Area Name"
|
||||
)
|
||||
self.MSA_ID_FIELD_NAME: str = "MSA ID"
|
||||
self.MSA_TYPE_FIELD_NAME: str = "MSA Type"
|
||||
|
||||
# Set constants for MSA median incomes
|
||||
self.MSA_MEDIAN_INCOME_URL: str = (
|
||||
f"https://api.census.gov/data/{self.ACS_YEAR}/acs/acs5?get=B19013_001E"
|
||||
+ "&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area"
|
||||
)
|
||||
self.MSA_INCOME_FIELD_NAME: str = f"Median household income in the past 12 months (MSA; {self.ACS_YEAR} inflation-adjusted dollars)"
|
||||
|
||||
# Set constants for state median incomes
|
||||
self.STATE_MEDIAN_INCOME_URL: str = f"https://api.census.gov/data/{self.ACS_YEAR}/acs/acs5?get=B19013_001E&for=state"
|
||||
self.STATE_GEOID_FIELD_NAME: str = "GEOID2"
|
||||
self.STATE_MEDIAN_INCOME_FIELD_NAME: str = f"Median household income (State; {self.ACS_YEAR} inflation-adjusted dollars)"
|
||||
|
||||
# Constants for output
|
||||
self.AMI_REFERENCE_FIELD_NAME: str = "AMI Reference"
|
||||
self.AMI_FIELD_NAME: str = "Area Median Income (State or metropolitan)"
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_FIELD_NAME,
|
||||
self.PLACE_FIELD_NAME,
|
||||
self.COUNTY_FIELD_NAME,
|
||||
self.STATE_ABBREVIATION_FIELD_NAME,
|
||||
self.MSA_FIELD_NAME,
|
||||
self.MSA_ID_FIELD_NAME,
|
||||
self.MSA_TYPE_FIELD_NAME,
|
||||
self.MSA_INCOME_FIELD_NAME,
|
||||
self.STATE_GEOID_FIELD_NAME,
|
||||
self.STATE_MEDIAN_INCOME_FIELD_NAME,
|
||||
self.AMI_REFERENCE_FIELD_NAME,
|
||||
self.AMI_FIELD_NAME,
|
||||
]
|
||||
|
||||
# Remaining definitions
|
||||
self.output_df: pd.DataFrame
|
||||
self.raw_geocorr_df: pd.DataFrame
|
||||
self.msa_median_incomes: dict
|
||||
self.state_median_incomes: dict
|
||||
|
||||
def _transform_geocorr(self) -> pd.DataFrame:
|
||||
# Transform the geocorr data
|
||||
geocorr_df = self.raw_geocorr_df
|
||||
|
||||
# Strip the unnecessary period from the tract ID:
|
||||
geocorr_df["tract"] = geocorr_df["tract"].str.replace(
|
||||
".", "", regex=False
|
||||
)
|
||||
|
||||
# Create the full GEOID out of the component parts.
|
||||
geocorr_df[self.GEOID_FIELD_NAME] = (
|
||||
geocorr_df["county"] + geocorr_df["tract"] + geocorr_df["bg"]
|
||||
)
|
||||
|
||||
# QA the combined field:
|
||||
tract_values = geocorr_df[self.GEOID_FIELD_NAME].str.len().unique()
|
||||
if any(tract_values != [12]):
|
||||
print(tract_values)
|
||||
raise ValueError("Some of the census BG data has the wrong length.")
|
||||
|
||||
# Rename some fields
|
||||
geocorr_df.rename(
|
||||
columns={
|
||||
"placenm": self.PLACE_FIELD_NAME,
|
||||
"cbsaname10": self.MSA_FIELD_NAME,
|
||||
"cntyname": self.COUNTY_FIELD_NAME,
|
||||
"stab": self.STATE_ABBREVIATION_FIELD_NAME,
|
||||
"cbsa10": self.MSA_ID_FIELD_NAME,
|
||||
"cbsatype10": self.MSA_TYPE_FIELD_NAME,
|
||||
},
|
||||
inplace=True,
|
||||
errors="raise",
|
||||
)
|
||||
|
||||
# Remove duplicated rows.
|
||||
# Some rows appear twice: once for the population within a CBG that's also within a census place,
|
||||
# and once for the population that's within a CBG that's *not* within a census place.
|
||||
# Drop the row that's not within a census place.
|
||||
|
||||
# Sort by whether the place has a place name:
|
||||
geocorr_df.sort_values(
|
||||
by=self.PLACE_FIELD_NAME, axis=0, ascending=True, inplace=True
|
||||
)
|
||||
|
||||
# Drop all the duplicated rows except for the first one (which will have the place name):
|
||||
rows_to_drop = geocorr_df.duplicated(
|
||||
keep="first", subset=[self.GEOID_FIELD_NAME]
|
||||
)
|
||||
|
||||
# Keep everything that's *not* a row to drop:
|
||||
geocorr_df = geocorr_df[~rows_to_drop]
|
||||
|
||||
# Sort by GEOID again to put the dataframe back to original order:
|
||||
# Note: avoiding using inplace because of unusual `SettingWithCopyWarning` warning.
|
||||
geocorr_df = geocorr_df.sort_values(
|
||||
by=self.GEOID_FIELD_NAME, axis=0, ascending=True, inplace=False
|
||||
)
|
||||
|
||||
if len(geocorr_df) > self.EXPECTED_MAX_CENSUS_BLOCK_GROUPS:
|
||||
raise ValueError("Too many CBGs.")
|
||||
|
||||
return geocorr_df
|
||||
|
||||
def _transform_msa_median_incomes(self) -> pd.DataFrame:
|
||||
# Remove first list entry, which is the column names.
|
||||
column_names = self.msa_median_incomes.pop(0)
|
||||
|
||||
msa_median_incomes_df = pd.DataFrame(
|
||||
data=self.msa_median_incomes, columns=column_names
|
||||
)
|
||||
msa_median_incomes_df.rename(
|
||||
columns={
|
||||
"B19013_001E": self.MSA_INCOME_FIELD_NAME,
|
||||
"metropolitan statistical area/micropolitan statistical area": self.MSA_ID_FIELD_NAME,
|
||||
},
|
||||
inplace=True,
|
||||
errors="raise",
|
||||
)
|
||||
|
||||
# Convert MSA ID to str
|
||||
msa_median_incomes_df[self.MSA_ID_FIELD_NAME] = msa_median_incomes_df[
|
||||
self.MSA_ID_FIELD_NAME
|
||||
].astype(str)
|
||||
|
||||
return msa_median_incomes_df
|
||||
|
||||
def _transform_state_median_incomes(self) -> pd.DataFrame:
|
||||
# Remove first list entry, which is the column names.
|
||||
column_names = self.state_median_incomes.pop(0)
|
||||
state_median_incomes_df = pd.DataFrame(
|
||||
data=self.state_median_incomes, columns=column_names
|
||||
)
|
||||
|
||||
state_median_incomes_df.rename(
|
||||
columns={
|
||||
"B19013_001E": self.STATE_MEDIAN_INCOME_FIELD_NAME,
|
||||
"state": self.STATE_GEOID_FIELD_NAME,
|
||||
},
|
||||
inplace=True,
|
||||
errors="raise",
|
||||
)
|
||||
|
||||
return state_median_incomes_df
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting three separate downloads.")
|
||||
# Load and clean GEOCORR data
|
||||
# Note: this data is generated by https://mcdc.missouri.edu/applications/geocorr2014.html, at the advice of the Census.
|
||||
# The specific query used is the following, which takes a couple of minutes to run:
|
||||
# https://mcdc.missouri.edu/cgi-bin/broker?_PROGRAM=apps.geocorr2014.sas&_SERVICE=MCDC_long&_debug=0&state=Mo29&state=Al01&state=Ak02&state=Az04&state=Ar05&state=Ca06&state=Co08&state=Ct09&state=De10&state=Dc11&state=Fl12&state=Ga13&state=Hi15&state=Id16&state=Il17&state=In18&state=Ia19&state=Ks20&state=Ky21&state=La22&state=Me23&state=Md24&state=Ma25&state=Mi26&state=Mn27&state=Ms28&state=Mt30&state=Ne31&state=Nv32&state=Nh33&state=Nj34&state=Nm35&state=Ny36&state=Nc37&state=Nd38&state=Oh39&state=Ok40&state=Or41&state=Pa42&state=Ri44&state=Sc45&state=Sd46&state=Tn47&state=Tx48&state=Ut49&state=Vt50&state=Va51&state=Wa53&state=Wv54&state=Wi55&state=Wy56&g1_=state&g1_=county&g1_=placefp&g1_=tract&g1_=bg&g2_=cbsa10&g2_=cbsatype10&wtvar=pop10&nozerob=1&title=&csvout=1&namoptf=b&listout=1&lstfmt=html&namoptr=b&oropt=&counties=&metros=&places=&latitude=&longitude=&locname=&distance=&kiloms=0&nrings=&r1=&r2=&r3=&r4=&r5=&r6=&r7=&r8=&r9=&r10=&lathi=&latlo=&longhi=&longlo=
|
||||
logger.info("Starting download of Geocorr information.")
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/geocorr2014_all_states.csv.zip",
|
||||
download_path=self.TMP_PATH,
|
||||
unzipped_file_path=self.TMP_PATH / "geocorr",
|
||||
)
|
||||
|
||||
self.raw_geocorr_df = pd.read_csv(
|
||||
filepath_or_buffer=self.TMP_PATH
|
||||
/ "geocorr"
|
||||
/ "geocorr2014_all_states.csv",
|
||||
# Skip second row, which has descriptions.
|
||||
skiprows=[1],
|
||||
# The following need to remain as strings for all of their digits, not get converted to numbers.
|
||||
dtype={
|
||||
"tract": "string",
|
||||
"county": "string",
|
||||
"state": "string",
|
||||
"bg": "string",
|
||||
"cbsa10": "string",
|
||||
},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
# Download MSA median incomes
|
||||
logger.info("Starting download of MSA median incomes.")
|
||||
download = requests.get(self.MSA_MEDIAN_INCOME_URL, verify=None)
|
||||
self.msa_median_incomes = json.loads(download.content)
|
||||
|
||||
# Download state median incomes
|
||||
logger.info("Starting download of state median incomes.")
|
||||
download_state = requests.get(self.STATE_MEDIAN_INCOME_URL, verify=None)
|
||||
self.state_median_incomes = json.loads(download_state.content)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
|
||||
# Run transforms:
|
||||
geocorr_df = self._transform_geocorr()
|
||||
msa_median_incomes_df = self._transform_msa_median_incomes()
|
||||
state_median_incomes_df = self._transform_state_median_incomes()
|
||||
|
||||
# Join CBGs on MSA incomes
|
||||
merged_df = geocorr_df.merge(
|
||||
msa_median_incomes_df, on=self.MSA_ID_FIELD_NAME, how="left"
|
||||
)
|
||||
|
||||
# Merge state income with CBGs
|
||||
merged_df[self.STATE_GEOID_FIELD_NAME] = (
|
||||
merged_df[self.GEOID_FIELD_NAME].astype(str).str[0:2]
|
||||
)
|
||||
|
||||
merged_with_state_income_df = merged_df.merge(
|
||||
state_median_incomes_df,
|
||||
how="left",
|
||||
on=self.STATE_GEOID_FIELD_NAME,
|
||||
)
|
||||
|
||||
if (
|
||||
len(merged_with_state_income_df)
|
||||
> self.EXPECTED_MAX_CENSUS_BLOCK_GROUPS
|
||||
):
|
||||
raise ValueError("Too many CBGs in join.")
|
||||
|
||||
# Choose reference income: MSA if MSA type is Metro, otherwise use State.
|
||||
merged_with_state_income_df[self.AMI_REFERENCE_FIELD_NAME] = [
|
||||
"MSA" if msa_type == "Metro" else "State"
|
||||
for msa_type in merged_with_state_income_df[
|
||||
self.MSA_TYPE_FIELD_NAME
|
||||
]
|
||||
]
|
||||
|
||||
# Populate reference income: MSA income if reference income is MSA, state income if reference income is state.
|
||||
merged_with_state_income_df[
|
||||
self.AMI_FIELD_NAME
|
||||
] = merged_with_state_income_df.apply(
|
||||
lambda x: x[self.MSA_INCOME_FIELD_NAME]
|
||||
if x[self.AMI_REFERENCE_FIELD_NAME] == "MSA"
|
||||
else x[self.STATE_MEDIAN_INCOME_FIELD_NAME],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
self.output_df = merged_with_state_income_df
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating Census ACS Median Income Data")
|
||||
|
||||
pass
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Census ACS Median Income CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.output_df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
|
@ -272,7 +272,6 @@ class HudHousingETL(ExtractTransformLoad):
|
|||
- self.df[RENTER_OCCUPIED_NOT_COMPUTED_FIELDS].sum(axis=1)
|
||||
)
|
||||
|
||||
|
||||
self.df["DENOM INCL NOT COMPUTED"] = (
|
||||
self.df[OWNER_OCCUPIED_POPULATION_FIELD]
|
||||
+ self.df[RENTER_OCCUPIED_POPULATION_FIELD]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue