Ticket 355: Adding map to Urban vs Rural Census Tracts (#696)

* Adding urban vs rural notebook

* Adding new code

* Adding settings

* Adding usa.csv

* Adding etl

* Adding etl

* Adding to etl_score

* quick changes to notebook

* Ensuring notebook can run

* Adding urban vs rural notebook

* Adding new code

* Adding settings

* Adding usa.csv

* Adding etl

* Adding etl

* Adding to etl_score

* quick changes to notebook

* Ensuring notebook can run

* adding urban to comparison tool

* renaming file

* adding urban rural to more comp tool outputs

* updating requirements and poetry

* Adding ej screen notebook

* removing ej screen notebook since it's in justice40-tool-iss-719

Co-authored-by: La <ryy0@cdc.gov>
Co-authored-by: lucasmbrown-usds <lucas.m.brown@omb.eop.gov>
This commit is contained in:
Vincent La 2021-09-22 12:31:03 -04:00 committed by GitHub
commit 7709836a12
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 563 additions and 142 deletions

View file

@ -0,0 +1,70 @@
import pandas as pd
from data_pipeline.config import settings
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.utils import (
get_module_logger,
unzip_file_from_url,
)
logger = get_module_logger(__name__)
class GeoCorrETL(ExtractTransformLoad):
def __init__(self):
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "geocorr"
# Need to change hyperlink to S3
self.GEOCORR_PLACES_URL = "https://justice40-data.s3.amazonaws.com/data-sources/geocorr_urban_rural.csv.zip"
self.GEOCORR_GEOID_FIELD_NAME = "GEOID10_TRACT"
self.URBAN_HERUISTIC_FIELD_NAME = "Urban Heuristic Flag"
self.df: pd.DataFrame
def extract(self) -> None:
logger.info(
"Starting to download 2MB GeoCorr Urban Rural Census Tract Map file."
)
unzip_file_from_url(
file_url=settings.AWS_JUSTICE40_DATASOURCES_URL
+ "/geocorr_urban_rural.csv.zip",
download_path=self.TMP_PATH,
unzipped_file_path=self.TMP_PATH / "geocorr",
)
self.df = pd.read_csv(
filepath_or_buffer=self.TMP_PATH
/ "geocorr"
/ "geocorr_urban_rural.csv",
dtype={
self.GEOCORR_GEOID_FIELD_NAME: "string",
},
low_memory=False,
)
def transform(self) -> None:
logger.info("Starting GeoCorr Urban Rural Map transform")
self.df.rename(
columns={
"urban_heuristic_flag": self.URBAN_HERUISTIC_FIELD_NAME,
},
inplace=True,
)
pass
# Put in logic from Jupyter Notebook transform when we switch in the hyperlink to Geocorr
def load(self) -> None:
logger.info("Saving GeoCorr Urban Rural Map Data")
# mkdir census
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
self.df.to_csv(path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False)
def validate(self) -> None:
logger.info("Validating GeoCorr Urban Rural Map Data")
pass

View file

@ -75,7 +75,7 @@ class NationalRiskIndexETL(ExtractTransformLoad):
# Reduce columns.
# Note: normally we wait until writing to CSV for this step, but since the file is so huge,
# move this up here for performance reasons.
df_nri = df_nri[ # pylint: disable=unsubscriptable-object
df_nri = df_nri[ # pylint: disable=unsubscriptable-object
[self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME, TRACT_COL]
]