mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-29 19:31:16 -07:00
Ticket 355: Adding map to Urban vs Rural Census Tracts (#696)
* Adding urban vs rural notebook * Adding new code * Adding settings * Adding usa.csv * Adding etl * Adding etl * Adding to etl_score * quick changes to notebook * Ensuring notebook can run * Adding urban vs rural notebook * Adding new code * Adding settings * Adding usa.csv * Adding etl * Adding etl * Adding to etl_score * quick changes to notebook * Ensuring notebook can run * adding urban to comparison tool * renaming file * adding urban rural to more comp tool outputs * updating requirements and poetry * Adding ej screen notebook * removing ej screen notebook since it's in justice40-tool-iss-719 Co-authored-by: La <ryy0@cdc.gov> Co-authored-by: lucasmbrown-usds <lucas.m.brown@omb.eop.gov>
This commit is contained in:
parent
aaf304fc89
commit
7709836a12
10 changed files with 563 additions and 142 deletions
|
@ -59,6 +59,11 @@ DATASET_LIST = [
|
|||
"module_dir": "doe_energy_burden",
|
||||
"class_name": "DOEEnergyBurden",
|
||||
},
|
||||
{
|
||||
"name": "geocorr",
|
||||
"module_dir": "geocorr",
|
||||
"class_name": "GeoCorrETL",
|
||||
},
|
||||
]
|
||||
CENSUS_INFO = {
|
||||
"name": "census",
|
||||
|
|
|
@ -80,6 +80,9 @@ class ScoreETL(ExtractTransformLoad):
|
|||
|
||||
self.SCORE_CSV_PATH: Path = self.DATA_PATH / "score" / "csv" / "full"
|
||||
|
||||
# Urban Rural Map
|
||||
self.URBAN_HERUISTIC_FIELD_NAME = "Urban Heuristic Flag"
|
||||
|
||||
# dataframes
|
||||
self.df: pd.DataFrame
|
||||
self.ejscreen_df: pd.DataFrame
|
||||
|
@ -91,6 +94,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.cdc_life_expectancy_df: pd.DataFrame
|
||||
self.doe_energy_burden_df: pd.DataFrame
|
||||
self.national_risk_index_df: pd.DataFrame
|
||||
self.geocorr_urban_rural_df: pd.DataFrame
|
||||
|
||||
def data_sets(self) -> list:
|
||||
# Define a named tuple that will be used for each data set input.
|
||||
|
@ -197,6 +201,11 @@ class ScoreETL(ExtractTransformLoad):
|
|||
renamed_field=self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
DataSet(
|
||||
input_field=self.URBAN_HERUISTIC_FIELD_NAME,
|
||||
renamed_field=self.URBAN_HERUISTIC_FIELD_NAME,
|
||||
bucket=None,
|
||||
),
|
||||
# The following data sets have buckets, because they're used in Score C
|
||||
DataSet(
|
||||
input_field="CANCER",
|
||||
|
@ -386,6 +395,16 @@ class ScoreETL(ExtractTransformLoad):
|
|||
low_memory=False,
|
||||
)
|
||||
|
||||
# Load GeoCorr Urban Rural Map
|
||||
geocorr_urban_rural_csv = (
|
||||
self.DATA_PATH / "dataset" / "geocorr" / "usa.csv"
|
||||
)
|
||||
self.geocorr_urban_rural_df = pd.read_csv(
|
||||
geocorr_urban_rural_csv,
|
||||
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def _join_cbg_dfs(self, census_block_group_dfs: list) -> pd.DataFrame:
|
||||
logger.info("Joining Census Block Group dataframes")
|
||||
census_block_group_df = functools.reduce(
|
||||
|
@ -619,6 +638,15 @@ class ScoreETL(ExtractTransformLoad):
|
|||
df["Score G"] = df["Score G (communities)"].astype(int)
|
||||
df["Score G (percentile)"] = df["Score G"]
|
||||
|
||||
df["Score H (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
& (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
) | (
|
||||
(df[self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME] > 0.40)
|
||||
& (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
)
|
||||
df["Score H"] = df["Score H (communities)"].astype(int)
|
||||
|
||||
df["Score I (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.7)
|
||||
& (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold)
|
||||
|
@ -629,20 +657,10 @@ class ScoreETL(ExtractTransformLoad):
|
|||
df["Score I"] = df["Score I (communities)"].astype(int)
|
||||
df["Score I (percentile)"] = df["Score I"]
|
||||
|
||||
df["Score H (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
& (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
) | (
|
||||
(df[self.POVERTY_LESS_THAN_200_FPL_FIELD_NAME] > 0.40)
|
||||
& (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
)
|
||||
df["Score H"] = df["Score H (communities)"].astype(int)
|
||||
|
||||
df["NMTC (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
) | (df[self.POVERTY_LESS_THAN_100_FPL_FIELD_NAME] > 0.20)
|
||||
|
||||
|
||||
df["Score K (communities)"] = (
|
||||
(df[self.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD_NAME] < 0.8)
|
||||
& (df[self.HIGH_SCHOOL_FIELD_NAME] > high_school_cutoff_threshold_2)
|
||||
|
@ -673,6 +691,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.cdc_places_df,
|
||||
self.cdc_life_expectancy_df,
|
||||
self.doe_energy_burden_df,
|
||||
self.geocorr_urban_rural_df,
|
||||
]
|
||||
census_tract_df = self._join_tract_dfs(census_tract_dfs)
|
||||
|
||||
|
|
70
data/data-pipeline/data_pipeline/etl/sources/geocorr/etl.py
Normal file
70
data/data-pipeline/data_pipeline/etl/sources/geocorr/etl.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
import pandas as pd
|
||||
|
||||
from data_pipeline.config import settings
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import (
|
||||
get_module_logger,
|
||||
unzip_file_from_url,
|
||||
)
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class GeoCorrETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "geocorr"
|
||||
|
||||
# Need to change hyperlink to S3
|
||||
self.GEOCORR_PLACES_URL = "https://justice40-data.s3.amazonaws.com/data-sources/geocorr_urban_rural.csv.zip"
|
||||
self.GEOCORR_GEOID_FIELD_NAME = "GEOID10_TRACT"
|
||||
self.URBAN_HERUISTIC_FIELD_NAME = "Urban Heuristic Flag"
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(
|
||||
"Starting to download 2MB GeoCorr Urban Rural Census Tract Map file."
|
||||
)
|
||||
unzip_file_from_url(
|
||||
file_url=settings.AWS_JUSTICE40_DATASOURCES_URL
|
||||
+ "/geocorr_urban_rural.csv.zip",
|
||||
download_path=self.TMP_PATH,
|
||||
unzipped_file_path=self.TMP_PATH / "geocorr",
|
||||
)
|
||||
|
||||
self.df = pd.read_csv(
|
||||
filepath_or_buffer=self.TMP_PATH
|
||||
/ "geocorr"
|
||||
/ "geocorr_urban_rural.csv",
|
||||
dtype={
|
||||
self.GEOCORR_GEOID_FIELD_NAME: "string",
|
||||
},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting GeoCorr Urban Rural Map transform")
|
||||
|
||||
self.df.rename(
|
||||
columns={
|
||||
"urban_heuristic_flag": self.URBAN_HERUISTIC_FIELD_NAME,
|
||||
},
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
pass
|
||||
|
||||
# Put in logic from Jupyter Notebook transform when we switch in the hyperlink to Geocorr
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving GeoCorr Urban Rural Map Data")
|
||||
|
||||
# mkdir census
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.df.to_csv(path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False)
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating GeoCorr Urban Rural Map Data")
|
||||
|
||||
pass
|
|
@ -75,7 +75,7 @@ class NationalRiskIndexETL(ExtractTransformLoad):
|
|||
# Reduce columns.
|
||||
# Note: normally we wait until writing to CSV for this step, but since the file is so huge,
|
||||
# move this up here for performance reasons.
|
||||
df_nri = df_nri[ # pylint: disable=unsubscriptable-object
|
||||
df_nri = df_nri[ # pylint: disable=unsubscriptable-object
|
||||
[self.RISK_INDEX_EXPECTED_ANNUAL_LOSS_SCORE_FIELD_NAME, TRACT_COL]
|
||||
]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue