Issue 1831: missing life expectancy data from Maine and Wisconsin (#1887)

* Fixing missing states and adding tests for states to all classes
This commit is contained in:
Lucas Merrill Brown 2022-09-09 20:35:01 -04:00 committed by GitHub
commit 6e9c44ea72
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
21 changed files with 522 additions and 187 deletions

View file

@ -1,58 +1,137 @@
import pathlib
from pathlib import Path
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.etl.base import ExtractTransformLoad, ValidGeoLevel
from data_pipeline.etl.score.etl_utils import (
compare_to_list_of_expected_state_fips_codes,
)
from data_pipeline.score import field_names
from data_pipeline.utils import get_module_logger, download_file_from_url
logger = get_module_logger(__name__)
class CDCLifeExpectancy(ExtractTransformLoad):
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
PUERTO_RICO_EXPECTED_IN_DATA = False
USA_FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/US_A.CSV"
STATES_MISSING_FROM_USA_FILE = ["23", "55"]
# For some reason, LEEP does not include Maine or Wisconsin in its "All of
# USA" file. Load these separately.
WISCONSIN_FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/WI_A.CSV"
MAINE_FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/ME_A.CSV"
TRACT_INPUT_COLUMN_NAME = "Tract ID"
STATE_INPUT_COLUMN_NAME = "STATE2KX"
raw_df: pd.DataFrame
output_df: pd.DataFrame
def __init__(self):
self.FILE_URL: str = "https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NVSS/USALEEP/CSV/US_A.CSV"
self.OUTPUT_PATH: Path = (
self.DATA_PATH / "dataset" / "cdc_life_expectancy"
)
self.TRACT_INPUT_COLUMN_NAME = "Tract ID"
self.LIFE_EXPECTANCY_FIELD_NAME = "Life expectancy (years)"
# Constants for output
self.COLUMNS_TO_KEEP = [
self.GEOID_TRACT_FIELD_NAME,
self.LIFE_EXPECTANCY_FIELD_NAME,
field_names.LIFE_EXPECTANCY_FIELD,
]
self.raw_df: pd.DataFrame
self.output_df: pd.DataFrame
def extract(self) -> None:
logger.info("Starting data download.")
download_file_name = (
self.get_tmp_path() / "cdc_life_expectancy" / "usa.csv"
)
def _download_and_prep_data(
self, file_url: str, download_file_name: pathlib.Path
) -> pd.DataFrame:
download_file_from_url(
file_url=self.FILE_URL,
file_url=file_url,
download_file_name=download_file_name,
verify=True,
)
self.raw_df = pd.read_csv(
df = pd.read_csv(
filepath_or_buffer=download_file_name,
dtype={
# The following need to remain as strings for all of their digits, not get converted to numbers.
self.TRACT_INPUT_COLUMN_NAME: "string",
self.STATE_INPUT_COLUMN_NAME: "string",
},
low_memory=False,
)
return df
def extract(self) -> None:
logger.info("Starting data download.")
all_usa_raw_df = self._download_and_prep_data(
file_url=self.USA_FILE_URL,
download_file_name=self.get_tmp_path()
/ "cdc_life_expectancy"
/ "usa.csv",
)
# Check which states are missing
states_in_life_expectancy_usa_file = list(
all_usa_raw_df[self.STATE_INPUT_COLUMN_NAME].unique()
)
# Expect that PR, Island Areas, and Maine/Wisconsin are missing
compare_to_list_of_expected_state_fips_codes(
actual_state_fips_codes=states_in_life_expectancy_usa_file,
continental_us_expected=self.CONTINENTAL_US_EXPECTED_IN_DATA,
puerto_rico_expected=self.PUERTO_RICO_EXPECTED_IN_DATA,
island_areas_expected=self.ISLAND_AREAS_EXPECTED_IN_DATA,
additional_fips_codes_not_expected=self.STATES_MISSING_FROM_USA_FILE,
)
logger.info("Downloading data for Maine")
maine_raw_df = self._download_and_prep_data(
file_url=self.MAINE_FILE_URL,
download_file_name=self.get_tmp_path()
/ "cdc_life_expectancy"
/ "maine.csv",
)
logger.info("Downloading data for Wisconsin")
wisconsin_raw_df = self._download_and_prep_data(
file_url=self.WISCONSIN_FILE_URL,
download_file_name=self.get_tmp_path()
/ "cdc_life_expectancy"
/ "wisconsin.csv",
)
combined_df = pd.concat(
objs=[all_usa_raw_df, maine_raw_df, wisconsin_raw_df],
ignore_index=True,
verify_integrity=True,
axis=0,
)
states_in_combined_df = list(
combined_df[self.STATE_INPUT_COLUMN_NAME].unique()
)
# Expect that PR and Island Areas are the only things now missing
compare_to_list_of_expected_state_fips_codes(
actual_state_fips_codes=states_in_combined_df,
continental_us_expected=self.CONTINENTAL_US_EXPECTED_IN_DATA,
puerto_rico_expected=self.PUERTO_RICO_EXPECTED_IN_DATA,
island_areas_expected=self.ISLAND_AREAS_EXPECTED_IN_DATA,
additional_fips_codes_not_expected=[],
)
# Save the updated version
self.raw_df = combined_df
def transform(self) -> None:
logger.info("Starting DOE energy burden transform.")
logger.info("Starting CDC life expectancy transform.")
self.output_df = self.raw_df.rename(
columns={
"e(0)": self.LIFE_EXPECTANCY_FIELD_NAME,
"e(0)": field_names.LIFE_EXPECTANCY_FIELD,
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
}
)