mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 09:41:26 -08:00
adding housing CSV to score
This commit is contained in:
parent
ec75b732cb
commit
678ab8c081
3 changed files with 165 additions and 12 deletions
124
score/ipython/housing_and_transportation_etl.ipynb
Normal file
124
score/ipython/housing_and_transportation_etl.ipynb
Normal file
|
@ -0,0 +1,124 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c21b63a3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import censusdata\n",
|
||||
"import csv\n",
|
||||
"import requests\n",
|
||||
"import zipfile\n",
|
||||
"\n",
|
||||
"from pathlib import Path\n",
|
||||
"\n",
|
||||
"ACS_YEAR = 2019\n",
|
||||
"\n",
|
||||
"DATA_PATH = Path.cwd().parent / \"data\"\n",
|
||||
"FIPS_CSV_PATH = DATA_PATH / \"fips_states_2010.csv\"\n",
|
||||
"OUTPUT_PATH = DATA_PATH / \"dataset\" / \"housing_and_transportation_index\"\n",
|
||||
"\n",
|
||||
"GEOID_FIELD_NAME = \"GEOID10\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6696bc66",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# https://htaindex.cnt.org/download/download.php?focus=blkgrp&geoid=01\n",
|
||||
"\n",
|
||||
"# Download each state / territory individually\n",
|
||||
"dfs = []\n",
|
||||
"with open(FIPS_CSV_PATH) as csv_file:\n",
|
||||
" csv_reader = csv.reader(csv_file, delimiter=\",\")\n",
|
||||
" line_count = 0\n",
|
||||
"\n",
|
||||
" for row in csv_reader:\n",
|
||||
" if line_count == 0:\n",
|
||||
" line_count += 1\n",
|
||||
" else:\n",
|
||||
" fips = row[0].strip()\n",
|
||||
"\n",
|
||||
" print(f\"Downloading data for state/territory with FIPS code {fips}\")\n",
|
||||
"\n",
|
||||
" download = requests.get(\n",
|
||||
" f\"https://htaindex.cnt.org/download/download.php?focus=blkgrp&geoid={fips}\",\n",
|
||||
" verify=False,\n",
|
||||
" )\n",
|
||||
" file_contents = download.content\n",
|
||||
" zip_file_dir = DATA_PATH / \"tmp\" / \"housing_and_transportation_index\"\n",
|
||||
"\n",
|
||||
" # Make the directory if it doesn't exist\n",
|
||||
" zip_file_dir.mkdir(parents=True, exist_ok=True)\n",
|
||||
" zip_file_path = zip_file_dir / f\"{fips}-downloaded.zip\"\n",
|
||||
" zip_file = open(zip_file_name, \"wb\")\n",
|
||||
" zip_file.write(file_contents)\n",
|
||||
" zip_file.close()\n",
|
||||
"\n",
|
||||
" with zipfile.ZipFile(zip_file_name, \"r\") as zip_ref:\n",
|
||||
" zip_ref.extractall(zip_file_dir)\n",
|
||||
"\n",
|
||||
" # New file name:\n",
|
||||
" tmp_csv_file_path = zip_file_dir / f\"htaindex_data_blkgrps_{fips}.csv\"\n",
|
||||
" tmp_df = pd.read_csv(filepath_or_buffer=tmp_csv_file_path)\n",
|
||||
"\n",
|
||||
" dfs.append(tmp_df)\n",
|
||||
"\n",
|
||||
"df = pd.concat(dfs)\n",
|
||||
"\n",
|
||||
"df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "244e0d03",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Rename and reformat block group ID\n",
|
||||
"df.rename(columns={\"blkgrp\": GEOID_FIELD_NAME}, inplace=True)\n",
|
||||
"df[GEOID_FIELD_NAME] = df[GEOID_FIELD_NAME].str.replace('\"', \"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8275c1ef",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"OUTPUT_PATH.mkdir(parents=True, exist_ok=True)\n",
|
||||
"\n",
|
||||
"df.to_csv(path_or_buf=OUTPUT_PATH / \"usa.csv\", index=False)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -7,11 +7,13 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Before running this notebook, you must run the following notebooks:\n",
|
||||
"# Before running this notebook, you must run the following notebooks (in any order):\n",
|
||||
"# 1. `ejscreen_etl.ipynb`\n",
|
||||
"# 2. `census_etl.ipynb`\n",
|
||||
"# 3. `housing_and_transportation_etl.ipynb`\n",
|
||||
"\n",
|
||||
"import collections\n",
|
||||
"import functools\n",
|
||||
"from pathlib import Path\n",
|
||||
"import pandas as pd\n",
|
||||
"import csv\n",
|
||||
|
@ -74,6 +76,25 @@
|
|||
"census_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "144bdde2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load housing and transportation data\n",
|
||||
"housing_and_transportation_index_csv = (\n",
|
||||
" data_path / \"dataset\" / \"housing_and_transportation_index\" / \"usa.csv\"\n",
|
||||
")\n",
|
||||
"housing_and_transportation_df = pd.read_csv(\n",
|
||||
" housing_and_transportation_index_csv,\n",
|
||||
" dtype={GEOID_FIELD_NAME: \"string\"},\n",
|
||||
" low_memory=False,\n",
|
||||
")\n",
|
||||
"housing_and_transportation_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -81,11 +102,14 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Join the two datasets\n",
|
||||
"df = ejscreen_df.merge(\n",
|
||||
" census_df,\n",
|
||||
" how=\"left\",\n",
|
||||
" on=GEOID_FIELD_NAME,\n",
|
||||
"# Join all the data sources that use census block groups\n",
|
||||
"dfs = [ejscreen_df, census_df, housing_and_transportation_df]\n",
|
||||
"\n",
|
||||
"df = functools.reduce(\n",
|
||||
" lambda left, right: pd.merge(\n",
|
||||
" left=left, right=right, on=GEOID_FIELD_NAME, how=\"outer\"\n",
|
||||
" ),\n",
|
||||
" dfs,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df.head()"
|
||||
|
@ -195,6 +219,11 @@
|
|||
" renamed_field=\"Unemployed Civilians (percent)\",\n",
|
||||
" bucket=BUCKET_SOCIOECONOMIC,\n",
|
||||
" ),\n",
|
||||
" DataSet(\n",
|
||||
" input_field=\"ht_ami\",\n",
|
||||
" renamed_field=\"Housing + Transportation Costs % Income for the Regional Typical Household\",\n",
|
||||
" bucket=BUCKET_SOCIOECONOMIC,\n",
|
||||
" ),\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
|
|
|
@ -301,12 +301,12 @@
|
|||
"id": "0c534966",
|
||||
"metadata": {
|
||||
"variables": {
|
||||
"all_100_sum": {},
|
||||
"all_100_sum_percent": {},
|
||||
"at_least_one_sum": {},
|
||||
"at_least_one_sum_percent": {},
|
||||
"cejst_cbgs_ca_only": {},
|
||||
"ces_tracts_count": {}
|
||||
"all_100_sum": "1373",
|
||||
"all_100_sum_percent": "69%",
|
||||
"at_least_one_sum": "1866",
|
||||
"at_least_one_sum_percent": "94%",
|
||||
"cejst_cbgs_ca_only": "10849",
|
||||
"ces_tracts_count": "1983"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
|
|
Loading…
Add table
Reference in a new issue