mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 13:41:17 -07:00
Updates backend constants to N (#1854)
This commit is contained in:
parent
4bf7773797
commit
6418335219
15 changed files with 1277 additions and 911 deletions
|
@ -198,42 +198,42 @@ TILES_SCORE_COLUMNS = {
|
|||
field_names.WASTEWATER_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "WF_PFS",
|
||||
field_names.UST_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "UST_PFS",
|
||||
field_names.M_WATER: "M_WTR",
|
||||
field_names.M_WORKFORCE: "M_WKFC",
|
||||
field_names.M_CLIMATE: "M_CLT",
|
||||
field_names.M_ENERGY: "M_ENY",
|
||||
field_names.M_TRANSPORTATION: "M_TRN",
|
||||
field_names.M_HOUSING: "M_HSG",
|
||||
field_names.M_POLLUTION: "M_PLN",
|
||||
field_names.M_HEALTH: "M_HLTH",
|
||||
field_names.N_WATER: "N_WTR",
|
||||
field_names.N_WORKFORCE: "N_WKFC",
|
||||
field_names.N_CLIMATE: "N_CLT",
|
||||
field_names.N_ENERGY: "N_ENY",
|
||||
field_names.N_TRANSPORTATION: "N_TRN",
|
||||
field_names.N_HOUSING: "N_HSG",
|
||||
field_names.N_POLLUTION: "N_PLN",
|
||||
field_names.N_HEALTH: "N_HLTH",
|
||||
# temporarily update this so that it's the Narwhal score that gets visualized on the map
|
||||
# The NEW final score value INCLUDES the adjacency index.
|
||||
field_names.FINAL_SCORE_N_BOOLEAN: "SM_C",
|
||||
field_names.FINAL_SCORE_N_BOOLEAN: "SN_C",
|
||||
field_names.SCORE_N_COMMUNITIES
|
||||
+ field_names.ADJACENT_MEAN_SUFFIX: "SM_DON",
|
||||
field_names.SCORE_N_COMMUNITIES: "SM_NO_DON",
|
||||
field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "EPLRLI",
|
||||
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "EALRLI",
|
||||
field_names.EXPECTED_BUILDING_LOSS_RATE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "EBLRLI",
|
||||
field_names.PM25_EXPOSURE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "PM25LI",
|
||||
field_names.ENERGY_BURDEN_LOW_INCOME_LOW_HIGHER_ED_FIELD: "EBLI",
|
||||
field_names.DIESEL_PARTICULATE_MATTER_LOW_INCOME_LOW_HIGHER_ED_FIELD: "DPMLI",
|
||||
field_names.TRAFFIC_PROXIMITY_LOW_INCOME_LOW_HIGHER_ED_FIELD: "TPLI",
|
||||
field_names.LEAD_PAINT_MEDIAN_HOUSE_VALUE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "LPMHVLI",
|
||||
field_names.HOUSING_BURDEN_LOW_INCOME_LOW_HIGHER_ED_FIELD: "HBLI",
|
||||
field_names.RMP_LOW_INCOME_LOW_HIGHER_ED_FIELD: "RMPLI",
|
||||
field_names.SUPERFUND_LOW_INCOME_LOW_HIGHER_ED_FIELD: "SFLI",
|
||||
field_names.HAZARDOUS_WASTE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "HWLI",
|
||||
field_names.WASTEWATER_DISCHARGE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "WDLI",
|
||||
+ field_names.ADJACENT_MEAN_SUFFIX: "SN_DON",
|
||||
field_names.SCORE_N_COMMUNITIES: "SN_NO_DON",
|
||||
field_names.EXPECTED_POPULATION_LOSS_RATE_LOW_INCOME_FIELD: "EPLRLI",
|
||||
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_LOW_INCOME_FIELD: "EALRLI",
|
||||
field_names.EXPECTED_BUILDING_LOSS_RATE_LOW_INCOME_FIELD: "EBLRLI",
|
||||
field_names.PM25_EXPOSURE_LOW_INCOME_FIELD: "PM25LI",
|
||||
field_names.ENERGY_BURDEN_LOW_INCOME_FIELD: "EBLI",
|
||||
field_names.DIESEL_PARTICULATE_MATTER_LOW_INCOME_FIELD: "DPMLI",
|
||||
field_names.TRAFFIC_PROXIMITY_LOW_INCOME_FIELD: "TPLI",
|
||||
field_names.LEAD_PAINT_MEDIAN_HOUSE_VALUE_LOW_INCOME_FIELD: "LPMHVLI",
|
||||
field_names.HOUSING_BURDEN_LOW_INCOME_FIELD: "HBLI",
|
||||
field_names.RMP_LOW_INCOME_FIELD: "RMPLI",
|
||||
field_names.SUPERFUND_LOW_INCOME_FIELD: "SFLI",
|
||||
field_names.HAZARDOUS_WASTE_LOW_INCOME_FIELD: "HWLI",
|
||||
field_names.WASTEWATER_DISCHARGE_LOW_INCOME_FIELD: "WDLI",
|
||||
field_names.UST_LOW_INCOME_FIELD: "USTLI",
|
||||
field_names.DIABETES_LOW_INCOME_LOW_HIGHER_ED_FIELD: "DLI",
|
||||
field_names.ASTHMA_LOW_INCOME_LOW_HIGHER_ED_FIELD: "ALI",
|
||||
field_names.HEART_DISEASE_LOW_INCOME_LOW_HIGHER_ED_FIELD: "HDLI",
|
||||
field_names.LOW_LIFE_EXPECTANCY_LOW_INCOME_LOW_HIGHER_ED_FIELD: "LLELI",
|
||||
field_names.LINGUISTIC_ISOLATION_LOW_HS_LOW_HIGHER_ED_FIELD: "LILHSE",
|
||||
field_names.POVERTY_LOW_HS_LOW_HIGHER_ED_FIELD: "PLHSE",
|
||||
field_names.LOW_MEDIAN_INCOME_LOW_HS_LOW_HIGHER_ED_FIELD: "LMILHSE",
|
||||
field_names.UNEMPLOYMENT_LOW_HS_LOW_HIGHER_ED_FIELD: "ULHSE",
|
||||
field_names.DIABETES_LOW_INCOME_FIELD: "DLI",
|
||||
field_names.ASTHMA_LOW_INCOME_FIELD: "ALI",
|
||||
field_names.HEART_DISEASE_LOW_INCOME_FIELD: "HDLI",
|
||||
field_names.LOW_LIFE_EXPECTANCY_LOW_INCOME_FIELD: "LLELI",
|
||||
field_names.LINGUISTIC_ISOLATION_LOW_HS_EDUCATION_FIELD: "LILHSE",
|
||||
field_names.POVERTY_LOW_HS_EDUCATION_FIELD: "PLHSE",
|
||||
field_names.LOW_MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD: "LMILHSE",
|
||||
field_names.UNEMPLOYMENT_LOW_HS_EDUCATION_FIELD: "ULHSE",
|
||||
# new booleans only for the environmental factors
|
||||
field_names.EXPECTED_POPULATION_LOSS_EXCEEDS_PCTILE_THRESHOLD: "EPL_ET",
|
||||
field_names.EXPECTED_AGRICULTURAL_LOSS_EXCEEDS_PCTILE_THRESHOLD: "EAL_ET",
|
||||
|
@ -276,28 +276,24 @@ TILES_SCORE_COLUMNS = {
|
|||
field_names.CENSUS_DECENNIAL_UNEMPLOYMENT_FIELD_2009
|
||||
+ field_names.ISLAND_AREAS_PERCENTILE_ADJUSTMENT_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "IAULHSE_PFS",
|
||||
field_names.LOW_HS_EDUCATION_LOW_HIGHER_ED_FIELD: "LHE",
|
||||
field_names.LOW_HS_EDUCATION_FIELD: "LHE",
|
||||
field_names.ISLAND_AREAS_LOW_HS_EDUCATION_FIELD: "IALHE",
|
||||
# Percentage of HS Degree completion for Islands
|
||||
field_names.CENSUS_DECENNIAL_HIGH_SCHOOL_ED_FIELD_2009: "IAHSEF",
|
||||
field_names.COLLEGE_ATTENDANCE_FIELD: "CA",
|
||||
field_names.COLLEGE_NON_ATTENDANCE_FIELD: "NCA",
|
||||
# This is logically equivalent to "non-college greater than 80%"
|
||||
field_names.COLLEGE_ATTENDANCE_LESS_THAN_20_FIELD: "CA_LT20",
|
||||
# Booleans for the front end about the types of thresholds exceeded
|
||||
field_names.CLIMATE_THRESHOLD_EXCEEDED: "M_CLT_EOMI",
|
||||
field_names.ENERGY_THRESHOLD_EXCEEDED: "M_ENY_EOMI",
|
||||
field_names.TRAFFIC_THRESHOLD_EXCEEDED: "M_TRN_EOMI",
|
||||
field_names.HOUSING_THREHSOLD_EXCEEDED: "M_HSG_EOMI",
|
||||
field_names.POLLUTION_THRESHOLD_EXCEEDED: "M_PLN_EOMI",
|
||||
field_names.WATER_THRESHOLD_EXCEEDED: "M_WTR_EOMI",
|
||||
field_names.HEALTH_THRESHOLD_EXCEEDED: "M_HLTH_EOMI",
|
||||
field_names.WORKFORCE_THRESHOLD_EXCEEDED: "M_WKFC_EOMI",
|
||||
field_names.CLIMATE_THRESHOLD_EXCEEDED: "N_CLT_EOMI",
|
||||
field_names.ENERGY_THRESHOLD_EXCEEDED: "N_ENY_EOMI",
|
||||
field_names.TRAFFIC_THRESHOLD_EXCEEDED: "N_TRN_EOMI",
|
||||
field_names.HOUSING_THREHSOLD_EXCEEDED: "N_HSG_EOMI",
|
||||
field_names.POLLUTION_THRESHOLD_EXCEEDED: "N_PLN_EOMI",
|
||||
field_names.WATER_THRESHOLD_EXCEEDED: "N_WTR_EOMI",
|
||||
field_names.HEALTH_THRESHOLD_EXCEEDED: "N_HLTH_EOMI",
|
||||
field_names.WORKFORCE_THRESHOLD_EXCEEDED: "N_WKFC_EOMI",
|
||||
# These are the booleans for socioeconomic indicators
|
||||
## this measures low income boolean
|
||||
field_names.FPL_200_SERIES_IMPUTED_AND_ADJUSTED: "FPL200S",
|
||||
## Low high school for t&wd
|
||||
field_names.WORKFORCE_SOCIO_INDICATORS_EXCEEDED: "M_WKFC_EBSI",
|
||||
field_names.WORKFORCE_SOCIO_INDICATORS_EXCEEDED: "N_WKFC_EBSI",
|
||||
field_names.DOT_BURDEN_PCTILE_THRESHOLD: "TD_ET",
|
||||
field_names.DOT_TRAVEL_BURDEN_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "TD_PFS",
|
||||
|
@ -377,8 +373,6 @@ TILES_SCORE_FLOAT_COLUMNS = [
|
|||
# Island areas HS degree attainment rate
|
||||
field_names.CENSUS_DECENNIAL_HIGH_SCHOOL_ED_FIELD_2009,
|
||||
field_names.WASTEWATER_FIELD + field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
field_names.COLLEGE_NON_ATTENDANCE_FIELD,
|
||||
field_names.COLLEGE_ATTENDANCE_FIELD,
|
||||
field_names.DOT_TRAVEL_BURDEN_FIELD + field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
field_names.FUTURE_FLOOD_RISK_FIELD + field_names.PERCENTILE_FIELD_SUFFIX,
|
||||
field_names.FUTURE_WILDFIRE_RISK_FIELD
|
||||
|
|
|
@ -403,6 +403,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
df[field_names.MEDIAN_INCOME_FIELD] / df[field_names.AMI_FIELD]
|
||||
)
|
||||
|
||||
# Donut columns get added later
|
||||
numeric_columns = [
|
||||
field_names.HOUSING_BURDEN_FIELD,
|
||||
field_names.NO_KITCHEN_OR_INDOOR_PLUMBING_FIELD,
|
||||
|
@ -477,12 +478,15 @@ class ScoreETL(ExtractTransformLoad):
|
|||
non_numeric_columns = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
field_names.PERSISTENT_POVERTY_FIELD,
|
||||
field_names.HISTORIC_REDLINING_SCORE_EXCEEDED,
|
||||
field_names.TRACT_ELIGIBLE_FOR_NONNATURAL_THRESHOLD,
|
||||
field_names.AGRICULTURAL_VALUE_BOOL_FIELD,
|
||||
field_names.ELIGIBLE_FUDS_BINARY_FIELD_NAME,
|
||||
]
|
||||
|
||||
boolean_columns = [
|
||||
field_names.AML_BOOLEAN,
|
||||
field_names.IMPUTED_INCOME_FLAG_FIELD_NAME,
|
||||
field_names.ELIGIBLE_FUDS_BINARY_FIELD_NAME,
|
||||
field_names.HISTORIC_REDLINING_SCORE_EXCEEDED,
|
||||
]
|
||||
|
||||
# For some columns, high values are "good", so we want to reverse the percentile
|
||||
|
@ -523,6 +527,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
non_numeric_columns
|
||||
+ numeric_columns
|
||||
+ [rp.field_name for rp in reverse_percentiles]
|
||||
+ boolean_columns
|
||||
)
|
||||
|
||||
df_copy = df[columns_to_keep].copy()
|
||||
|
@ -533,6 +538,10 @@ class ScoreETL(ExtractTransformLoad):
|
|||
|
||||
df_copy[numeric_columns] = df_copy[numeric_columns].apply(pd.to_numeric)
|
||||
|
||||
# coerce all booleans to bools
|
||||
for col in boolean_columns:
|
||||
df_copy[col] = df_copy[col].astype(bool)
|
||||
|
||||
# Convert all columns to numeric and do math
|
||||
# Note that we have a few special conditions here and we handle them explicitly.
|
||||
# For *Linguistic Isolation*, we do NOT want to include Puerto Rico in the percentile
|
||||
|
|
|
@ -53,7 +53,7 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
self.TARGET_SCORE_SHORT_FIELD = constants.TILES_SCORE_COLUMNS[
|
||||
field_names.SCORE_N
|
||||
]
|
||||
self.TARGET_SCORE_RENAME_TO = "M_SCORE"
|
||||
self.TARGET_SCORE_RENAME_TO = "SCORE"
|
||||
|
||||
# Import the shortened name for tract ("GTF") that's used on the tiles.
|
||||
self.TRACT_SHORT_FIELD = constants.TILES_SCORE_COLUMNS[
|
||||
|
|
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue