mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-26 19:11:16 -07:00
updating pylint
This commit is contained in:
parent
19b3ba24ef
commit
5ff988ab29
25 changed files with 154 additions and 101 deletions
|
@ -18,14 +18,17 @@ repos:
|
|||
"--ignore-init-module-imports",
|
||||
]
|
||||
|
||||
- repo: https://github.com/asottile/reorder_python_imports
|
||||
rev: v3.8.3
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.10.1
|
||||
hooks:
|
||||
- id: reorder-python-imports
|
||||
language_version: python3.9
|
||||
- id: isort
|
||||
name: isort (python)
|
||||
args:
|
||||
[
|
||||
"--application-directories=.",
|
||||
"--force-single-line-imports",
|
||||
"--profile=black",
|
||||
"--line-length=80",
|
||||
"--src-path=.:data/data-pipeline"
|
||||
]
|
||||
|
||||
- repo: https://github.com/ambv/black
|
||||
|
|
|
@ -128,9 +128,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"utils.validate_new_data(\n",
|
||||
" file_path=COMPARATOR_FILE, score_col=COMPARATOR_COLUMN\n",
|
||||
")"
|
||||
"utils.validate_new_data(file_path=COMPARATOR_FILE, score_col=COMPARATOR_COLUMN)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -148,20 +146,25 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"comparator_cols = [COMPARATOR_COLUMN] + OTHER_COMPARATOR_COLUMNS if OTHER_COMPARATOR_COLUMNS else [COMPARATOR_COLUMN]\n",
|
||||
"comparator_cols = (\n",
|
||||
" [COMPARATOR_COLUMN] + OTHER_COMPARATOR_COLUMNS\n",
|
||||
" if OTHER_COMPARATOR_COLUMNS\n",
|
||||
" else [COMPARATOR_COLUMN]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# papermill_description=Loading_data\n",
|
||||
"joined_df = pd.concat(\n",
|
||||
" [\n",
|
||||
" utils.read_file(\n",
|
||||
" file_path=SCORE_FILE,\n",
|
||||
" columns=[TOTAL_POPULATION_COLUMN, SCORE_COLUMN] + ADDITIONAL_DEMO_COLUMNS,\n",
|
||||
" columns=[TOTAL_POPULATION_COLUMN, SCORE_COLUMN]\n",
|
||||
" + ADDITIONAL_DEMO_COLUMNS,\n",
|
||||
" geoid=GEOID_COLUMN,\n",
|
||||
" ),\n",
|
||||
" utils.read_file(\n",
|
||||
" file_path=COMPARATOR_FILE,\n",
|
||||
" columns=comparator_cols,\n",
|
||||
" geoid=GEOID_COLUMN\n",
|
||||
" geoid=GEOID_COLUMN,\n",
|
||||
" ),\n",
|
||||
" utils.read_file(\n",
|
||||
" file_path=DEMOGRAPHIC_FILE,\n",
|
||||
|
@ -202,7 +205,7 @@
|
|||
" comparator_column=COMPARATOR_COLUMN,\n",
|
||||
" score_column=SCORE_COLUMN,\n",
|
||||
" population_column=TOTAL_POPULATION_COLUMN,\n",
|
||||
" geoid_column=GEOID_COLUMN\n",
|
||||
" geoid_column=GEOID_COLUMN,\n",
|
||||
")\n",
|
||||
"population_df"
|
||||
]
|
||||
|
@ -230,12 +233,12 @@
|
|||
" utils.get_demo_series(\n",
|
||||
" grouping_column=COMPARATOR_COLUMN,\n",
|
||||
" joined_df=joined_df,\n",
|
||||
" demo_columns=ADDITIONAL_DEMO_COLUMNS + DEMOGRAPHIC_COLUMNS\n",
|
||||
" demo_columns=ADDITIONAL_DEMO_COLUMNS + DEMOGRAPHIC_COLUMNS,\n",
|
||||
" ),\n",
|
||||
" utils.get_demo_series(\n",
|
||||
" grouping_column=SCORE_COLUMN,\n",
|
||||
" joined_df=joined_df,\n",
|
||||
" demo_columns=ADDITIONAL_DEMO_COLUMNS + DEMOGRAPHIC_COLUMNS\n",
|
||||
" demo_columns=ADDITIONAL_DEMO_COLUMNS + DEMOGRAPHIC_COLUMNS,\n",
|
||||
" ),\n",
|
||||
" ],\n",
|
||||
" axis=1,\n",
|
||||
|
@ -256,17 +259,25 @@
|
|||
" y=\"Variable\",\n",
|
||||
" x=\"Avg in tracts\",\n",
|
||||
" hue=\"Definition\",\n",
|
||||
" data=tract_level_by_identification_df.sort_values(by=COMPARATOR_COLUMN, ascending=False)\n",
|
||||
" data=tract_level_by_identification_df.sort_values(\n",
|
||||
" by=COMPARATOR_COLUMN, ascending=False\n",
|
||||
" )\n",
|
||||
" .stack()\n",
|
||||
" .reset_index()\n",
|
||||
" .rename(\n",
|
||||
" columns={\"level_0\": \"Variable\", \"level_1\": \"Definition\", 0: \"Avg in tracts\"}\n",
|
||||
" columns={\n",
|
||||
" \"level_0\": \"Variable\",\n",
|
||||
" \"level_1\": \"Definition\",\n",
|
||||
" 0: \"Avg in tracts\",\n",
|
||||
" }\n",
|
||||
" ),\n",
|
||||
" palette=\"Blues\",\n",
|
||||
")\n",
|
||||
"plt.xlim(0, 1)\n",
|
||||
"plt.title(\"Tract level averages by identification strategy\")\n",
|
||||
"plt.savefig(os.path.join(OUTPUT_DATA_PATH, \"tract_lvl_avg.jpg\"), bbox_inches='tight')"
|
||||
"plt.savefig(\n",
|
||||
" os.path.join(OUTPUT_DATA_PATH, \"tract_lvl_avg.jpg\"), bbox_inches=\"tight\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -282,7 +293,7 @@
|
|||
" score_column=SCORE_COLUMN,\n",
|
||||
" comparator_column=COMPARATOR_COLUMN,\n",
|
||||
" demo_columns=ADDITIONAL_DEMO_COLUMNS + DEMOGRAPHIC_COLUMNS,\n",
|
||||
" keep_missing_values=KEEP_MISSING_VALUES_FOR_SEGMENTATION\n",
|
||||
" keep_missing_values=KEEP_MISSING_VALUES_FOR_SEGMENTATION,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"tract_level_by_grouping_formatted_df = utils.format_multi_index_for_excel(\n",
|
||||
|
@ -363,7 +374,7 @@
|
|||
"comparator_and_cejst_proportion_series, states = utils.get_final_summary_info(\n",
|
||||
" population=population_df,\n",
|
||||
" comparator_file=COMPARATOR_FILE,\n",
|
||||
" geoid_col=GEOID_COLUMN\n",
|
||||
" geoid_col=GEOID_COLUMN,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
@ -401,7 +412,7 @@
|
|||
" population_weighted_stats_df=population_weighted_stats_df,\n",
|
||||
" tract_level_by_grouping_formatted_df=tract_level_by_grouping_formatted_df,\n",
|
||||
" comparator_and_cejst_proportion_series=comparator_and_cejst_proportion_series,\n",
|
||||
" states_text=states_text\n",
|
||||
" states_text=states_text,\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from dynaconf import Dynaconf
|
||||
import data_pipeline
|
||||
import pathlib
|
||||
|
||||
import data_pipeline
|
||||
from dynaconf import Dynaconf
|
||||
|
||||
settings = Dynaconf(
|
||||
envvar_prefix="DYNACONF",
|
||||
settings_files=["settings.toml", ".secrets.toml"],
|
||||
|
|
|
@ -427,7 +427,9 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"for col in [col for col in download_codebook.index.to_list() if \"(percentile)\" in col]:\n",
|
||||
"for col in [\n",
|
||||
" col for col in download_codebook.index.to_list() if \"(percentile)\" in col\n",
|
||||
"]:\n",
|
||||
" print(f\" - column_name: {col}\")\n",
|
||||
" if \"Low\" not in col:\n",
|
||||
" print(\n",
|
||||
|
|
|
@ -11,9 +11,7 @@ from data_pipeline.etl.sources.dot_travel_composite.etl import (
|
|||
TravelCompositeETL,
|
||||
)
|
||||
from data_pipeline.etl.sources.eamlis.etl import AbandonedMineETL
|
||||
from data_pipeline.etl.sources.fsf_flood_risk.etl import (
|
||||
FloodRiskETL,
|
||||
)
|
||||
from data_pipeline.etl.sources.fsf_flood_risk.etl import FloodRiskETL
|
||||
from data_pipeline.etl.sources.fsf_wildfire_risk.etl import WildfireRiskETL
|
||||
from data_pipeline.etl.sources.national_risk_index.etl import (
|
||||
NationalRiskIndexETL,
|
||||
|
|
|
@ -9,9 +9,7 @@ from data_pipeline.content.schemas.download_schemas import CSVConfig
|
|||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.score import constants
|
||||
from data_pipeline.etl.score.etl_utils import check_score_data_source
|
||||
from data_pipeline.etl.sources.census.etl_utils import (
|
||||
check_census_data_source,
|
||||
)
|
||||
from data_pipeline.etl.sources.census.etl_utils import check_census_data_source
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.utils import load_dict_from_yaml_object_fields
|
||||
|
|
|
@ -9,9 +9,7 @@ from data_pipeline.content.schemas.download_schemas import ExcelConfig
|
|||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.score.etl_utils import create_codebook
|
||||
from data_pipeline.etl.score.etl_utils import floor_series
|
||||
from data_pipeline.etl.sources.census.etl_utils import (
|
||||
check_census_data_source,
|
||||
)
|
||||
from data_pipeline.etl.sources.census.etl_utils import check_census_data_source
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import column_list_from_yaml_object_fields
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
|
|
@ -5,9 +5,7 @@ from pathlib import Path
|
|||
|
||||
import pandas.api.types as ptypes
|
||||
import pandas.testing as pdt
|
||||
from data_pipeline.content.schemas.download_schemas import (
|
||||
CSVConfig,
|
||||
)
|
||||
from data_pipeline.content.schemas.download_schemas import CSVConfig
|
||||
from data_pipeline.etl.score import constants
|
||||
from data_pipeline.utils import load_yaml_dict_from_file
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@ from data_pipeline.utils import get_module_logger
|
|||
from data_pipeline.utils import remove_all_from_dir
|
||||
from data_pipeline.utils import remove_files_from_dir
|
||||
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
|
|
|
@ -211,7 +211,9 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"tmp = sns.FacetGrid(data=score_m, col=\"Urban Heuristic Flag\", col_wrap=2, height=7)\n",
|
||||
"tmp = sns.FacetGrid(\n",
|
||||
" data=score_m, col=\"Urban Heuristic Flag\", col_wrap=2, height=7\n",
|
||||
")\n",
|
||||
"tmp.map(\n",
|
||||
" sns.distplot,\n",
|
||||
" \"Expected agricultural loss rate (Natural Hazards Risk Index) (percentile)\",\n",
|
||||
|
@ -250,7 +252,9 @@
|
|||
")\n",
|
||||
"\n",
|
||||
"nri_with_flag[\"total_ag_loss\"] = nri_with_flag.filter(like=\"EALA\").sum(axis=1)\n",
|
||||
"nri_with_flag[\"total_ag_loss_pctile\"] = nri_with_flag[\"total_ag_loss\"].rank(pct=True)\n",
|
||||
"nri_with_flag[\"total_ag_loss_pctile\"] = nri_with_flag[\"total_ag_loss\"].rank(\n",
|
||||
" pct=True\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"nri_with_flag.groupby(\"Urban Heuristic Flag\")[\"total_ag_loss_pctile\"].mean()"
|
||||
]
|
||||
|
@ -779,9 +783,9 @@
|
|||
" \"Greater than or equal to the 90th percentile for expected agriculture loss rate, is low income, and has a low percent of higher ed students?\"\n",
|
||||
"].astype(int)\n",
|
||||
"\n",
|
||||
"score_m_adjusted_tracts = set(score_m[score_m[\"adjusted\"] > 0][\"GEOID10_TRACT\"]).union(\n",
|
||||
" all_ag_loss_tracts\n",
|
||||
")\n",
|
||||
"score_m_adjusted_tracts = set(\n",
|
||||
" score_m[score_m[\"adjusted\"] > 0][\"GEOID10_TRACT\"]\n",
|
||||
").union(all_ag_loss_tracts)\n",
|
||||
"display(len(set(all_scorem_tracts).difference(score_m_adjusted_tracts)))"
|
||||
]
|
||||
},
|
||||
|
@ -832,7 +836,11 @@
|
|||
" left_clip = nri_with_flag[nri_with_flag[\"Urban Heuristic Flag\"] == 0][\n",
|
||||
" \"AGRIVALUE\"\n",
|
||||
" ].quantile(threshold)\n",
|
||||
" print(\"At threshold {:.2f}, minimum value is ${:,.0f}\".format(threshold, left_clip))\n",
|
||||
" print(\n",
|
||||
" \"At threshold {:.2f}, minimum value is ${:,.0f}\".format(\n",
|
||||
" threshold, left_clip\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" tmp_value = nri_with_flag[\"AGRIVALUE\"].clip(lower=left_clip)\n",
|
||||
" nri_with_flag[\"total_ag_loss_pctile_{:.2f}\".format(threshold)] = (\n",
|
||||
" nri_with_flag[\"total_ag_loss\"] / tmp_value\n",
|
||||
|
@ -889,7 +897,9 @@
|
|||
" .set_index(\"Left clip value\")[[\"Rural\", \"Urban\"]]\n",
|
||||
" .stack()\n",
|
||||
" .reset_index()\n",
|
||||
" .rename(columns={\"level_1\": \"Tract classification\", 0: \"Average percentile\"})\n",
|
||||
" .rename(\n",
|
||||
" columns={\"level_1\": \"Tract classification\", 0: \"Average percentile\"}\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
"source": [
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"module_path = os.path.abspath(os.path.join(\"../..\"))\n",
|
||||
"if module_path not in sys.path:\n",
|
||||
" sys.path.append(module_path)"
|
||||
|
@ -94,9 +95,13 @@
|
|||
"bia_aian_supplemental_geojson = (\n",
|
||||
" GEOJSON_BASE_PATH / \"bia_national_lar\" / \"BIA_AIAN_Supplemental.json\"\n",
|
||||
")\n",
|
||||
"bia_tsa_geojson_geojson = GEOJSON_BASE_PATH / \"bia_national_lar\" / \"BIA_TSA.json\"\n",
|
||||
"bia_tsa_geojson_geojson = (\n",
|
||||
" GEOJSON_BASE_PATH / \"bia_national_lar\" / \"BIA_TSA.json\"\n",
|
||||
")\n",
|
||||
"alaska_native_villages_geojson = (\n",
|
||||
" GEOJSON_BASE_PATH / \"alaska_native_villages\" / \"AlaskaNativeVillages.gdb.geojson\"\n",
|
||||
" GEOJSON_BASE_PATH\n",
|
||||
" / \"alaska_native_villages\"\n",
|
||||
" / \"AlaskaNativeVillages.gdb.geojson\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
@ -131,7 +136,9 @@
|
|||
"len(\n",
|
||||
" sorted(\n",
|
||||
" list(\n",
|
||||
" bia_national_lar_df.LARName.str.replace(r\"\\(.*\\) \", \"\", regex=True).unique()\n",
|
||||
" bia_national_lar_df.LARName.str.replace(\n",
|
||||
" r\"\\(.*\\) \", \"\", regex=True\n",
|
||||
" ).unique()\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
")"
|
||||
|
|
|
@ -45,6 +45,7 @@
|
|||
"source": [
|
||||
"# Read in the score geojson file\n",
|
||||
"from data_pipeline.etl.score.constants import DATA_SCORE_CSV_TILES_FILE_PATH\n",
|
||||
"\n",
|
||||
"nation = gpd.read_file(DATA_SCORE_CSV_TILES_FILE_PATH)"
|
||||
]
|
||||
},
|
||||
|
@ -93,10 +94,14 @@
|
|||
" random_tile_features = json.loads(f.read())\n",
|
||||
"\n",
|
||||
"# Flatten data around the features key:\n",
|
||||
"flatten_features = pd.json_normalize(random_tile_features, record_path=[\"features\"])\n",
|
||||
"flatten_features = pd.json_normalize(\n",
|
||||
" random_tile_features, record_path=[\"features\"]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# index into the feature properties, get keys and turn into a sorted list\n",
|
||||
"random_tile = sorted(list(flatten_features[\"features\"][0][0][\"properties\"].keys()))"
|
||||
"random_tile = sorted(\n",
|
||||
" list(flatten_features[\"features\"][0][0][\"properties\"].keys())\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -291,8 +296,8 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_HRS_GEO = nation[['GEOID10', 'SF', 'CF', 'HRS_ET', 'AML_ET', 'FUDS_ET']]\n",
|
||||
"nation_HRS_GEO.loc[nation_HRS_GEO['FUDS_ET'] == '0']"
|
||||
"nation_HRS_GEO = nation[[\"GEOID10\", \"SF\", \"CF\", \"HRS_ET\", \"AML_ET\", \"FUDS_ET\"]]\n",
|
||||
"nation_HRS_GEO.loc[nation_HRS_GEO[\"FUDS_ET\"] == \"0\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -321,7 +326,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation['HRS_ET'].unique()"
|
||||
"nation[\"HRS_ET\"].unique()"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
|
@ -18,7 +18,10 @@
|
|||
" sys.path.append(module_path)\n",
|
||||
"\n",
|
||||
"from data_pipeline.config import settings\n",
|
||||
"from data_pipeline.etl.sources.geo_utils import add_tracts_for_geometries, get_tract_geojson\n"
|
||||
"from data_pipeline.etl.sources.geo_utils import (\n",
|
||||
" add_tracts_for_geometries,\n",
|
||||
" get_tract_geojson,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -655,9 +658,9 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"adjacent_tracts.groupby(\"ORIGINAL_TRACT\")[[\"included\"]].mean().reset_index().rename(\n",
|
||||
" columns={\"ORIGINAL_TRACT\": \"GEOID10_TRACT\"}\n",
|
||||
")"
|
||||
"adjacent_tracts.groupby(\"ORIGINAL_TRACT\")[\n",
|
||||
" [\"included\"]\n",
|
||||
"].mean().reset_index().rename(columns={\"ORIGINAL_TRACT\": \"GEOID10_TRACT\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -65,7 +65,8 @@
|
|||
"tmp_path.mkdir(parents=True, exist_ok=True)\n",
|
||||
"\n",
|
||||
"eamlis_path_in_s3 = (\n",
|
||||
" settings.AWS_JUSTICE40_DATASOURCES_URL + \"/eAMLIS export of all data.tsv.zip\"\n",
|
||||
" settings.AWS_JUSTICE40_DATASOURCES_URL\n",
|
||||
" + \"/eAMLIS export of all data.tsv.zip\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"unzip_file_from_url(\n",
|
||||
|
|
|
@ -460,7 +460,9 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"object_ids_to_keep = set(\n",
|
||||
" merged_exaple_data[merged_exaple_data[\"_merge\"] == \"both\"].OBJECTID.astype(\"int\")\n",
|
||||
" merged_exaple_data[merged_exaple_data[\"_merge\"] == \"both\"].OBJECTID.astype(\n",
|
||||
" \"int\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"features = []\n",
|
||||
"for feature in raw_fuds_geojson[\"features\"]:\n",
|
||||
|
@ -476,7 +478,11 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"def make_fake_feature(\n",
|
||||
" state: str, has_projects: bool, is_eligible: bool, latitude: float, longitude: float\n",
|
||||
" state: str,\n",
|
||||
" has_projects: bool,\n",
|
||||
" is_eligible: bool,\n",
|
||||
" latitude: float,\n",
|
||||
" longitude: float,\n",
|
||||
"):\n",
|
||||
" \"\"\"For tracts where we don't have a FUDS, fake one.\"\"\"\n",
|
||||
" make_fake_feature._object_id += 1\n",
|
||||
|
@ -537,7 +543,9 @@
|
|||
"# Create FUDS in CA for each tract that doesn't have a FUDS\n",
|
||||
"for tract_id, point in points.items():\n",
|
||||
" for bools in [(True, True), (True, False), (False, False)]:\n",
|
||||
" features.append(make_fake_feature(\"CA\", bools[0], bools[1], point.y, point.x))"
|
||||
" features.append(\n",
|
||||
" make_fake_feature(\"CA\", bools[0], bools[1], point.y, point.x)\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -596,9 +604,9 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"test_frame_with_tracts_full = test_frame_with_tracts = add_tracts_for_geometries(\n",
|
||||
" test_frame\n",
|
||||
")"
|
||||
"test_frame_with_tracts_full = (\n",
|
||||
" test_frame_with_tracts\n",
|
||||
") = add_tracts_for_geometries(test_frame)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -680,7 +688,9 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"tracts = test_frame_with_tracts_full[[\"GEOID10_TRACT\", \"geometry\"]].drop_duplicates()\n",
|
||||
"tracts = test_frame_with_tracts_full[\n",
|
||||
" [\"GEOID10_TRACT\", \"geometry\"]\n",
|
||||
"].drop_duplicates()\n",
|
||||
"tracts[\"lat_long\"] = test_frame_with_tracts_full.geometry.apply(\n",
|
||||
" lambda point: (point.x, point.y)\n",
|
||||
")\n",
|
||||
|
|
|
@ -45,7 +45,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation['FUDS_RAW']"
|
||||
"nation[\"FUDS_RAW\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -248,7 +248,18 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind = nation[['GEOID10', 'SF', 'CF', 'HRS_ET', 'AML_ET', 'AML_RAW','FUDS_ET', 'FUDS_RAW']]\n",
|
||||
"nation_new_ind = nation[\n",
|
||||
" [\n",
|
||||
" \"GEOID10\",\n",
|
||||
" \"SF\",\n",
|
||||
" \"CF\",\n",
|
||||
" \"HRS_ET\",\n",
|
||||
" \"AML_ET\",\n",
|
||||
" \"AML_RAW\",\n",
|
||||
" \"FUDS_ET\",\n",
|
||||
" \"FUDS_RAW\",\n",
|
||||
" ]\n",
|
||||
"]\n",
|
||||
"nation_new_ind"
|
||||
]
|
||||
},
|
||||
|
@ -270,7 +281,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['HRS_ET'].unique()"
|
||||
"nation_new_ind[\"HRS_ET\"].unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -293,7 +304,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['HRS_ET'].value_counts()"
|
||||
"nation_new_ind[\"HRS_ET\"].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -314,7 +325,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['AML_ET'].unique()"
|
||||
"nation_new_ind[\"AML_ET\"].unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -337,7 +348,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['AML_ET'].value_counts()"
|
||||
"nation_new_ind[\"AML_ET\"].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -358,7 +369,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['AML_RAW'].unique()"
|
||||
"nation_new_ind[\"AML_RAW\"].unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -380,7 +391,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['AML_RAW'].value_counts()"
|
||||
"nation_new_ind[\"AML_RAW\"].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -401,7 +412,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['FUDS_ET'].unique()"
|
||||
"nation_new_ind[\"FUDS_ET\"].unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -424,7 +435,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['FUDS_ET'].value_counts()"
|
||||
"nation_new_ind[\"FUDS_ET\"].value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -445,7 +456,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['FUDS_RAW'].unique()"
|
||||
"nation_new_ind[\"FUDS_RAW\"].unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -468,7 +479,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"nation_new_ind['FUDS_RAW'].value_counts()"
|
||||
"nation_new_ind[\"FUDS_RAW\"].value_counts()"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
|
@ -59,11 +59,13 @@
|
|||
"census_tract_gdf = gpd.read_file(\n",
|
||||
" CensusETL.NATIONAL_TRACT_JSON_PATH,\n",
|
||||
" engine=\"fiona\",\n",
|
||||
" include_fields=[\"GEOID10\"]\n",
|
||||
" include_fields=[\"GEOID10\"],\n",
|
||||
")\n",
|
||||
"end2 = time.time()\n",
|
||||
"\n",
|
||||
"print(\"Time taken to execute the function using include fields is\", end2-begin2)"
|
||||
"print(\n",
|
||||
" \"Time taken to execute the function using include fields is\", end2 - begin2\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -1369,7 +1369,9 @@
|
|||
"\n",
|
||||
"results = results.reset_index()\n",
|
||||
"\n",
|
||||
"results.to_csv(\"~/Downloads/tribal_area_as_a_share_of_tract_area.csv\", index=False)\n",
|
||||
"results.to_csv(\n",
|
||||
" \"~/Downloads/tribal_area_as_a_share_of_tract_area.csv\", index=False\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Printing results\n",
|
||||
"print(results)"
|
||||
|
|
|
@ -11,7 +11,6 @@ from data_pipeline.etl.score.constants import TILES_ISLAND_AREA_FIPS_CODES
|
|||
from data_pipeline.score import field_names
|
||||
from data_pipeline.score.field_names import GEOID_TRACT_FIELD
|
||||
|
||||
|
||||
pytestmark = pytest.mark.smoketest
|
||||
UNMATCHED_TRACT_THRESHOLD = 1000
|
||||
|
||||
|
|
|
@ -1,9 +1,7 @@
|
|||
# pylint: disable=protected-access
|
||||
import pathlib
|
||||
|
||||
from data_pipeline.etl.sources.doe_energy_burden.etl import (
|
||||
DOEEnergyBurden,
|
||||
)
|
||||
from data_pipeline.etl.sources.doe_energy_burden.etl import DOEEnergyBurden
|
||||
from data_pipeline.tests.sources.example.test_etl import TestETL
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
|
|
|
@ -3,9 +3,7 @@ import pathlib
|
|||
from unittest import mock
|
||||
|
||||
from data_pipeline.etl.base import ValidGeoLevel
|
||||
from data_pipeline.etl.sources.eamlis.etl import (
|
||||
AbandonedMineETL,
|
||||
)
|
||||
from data_pipeline.etl.sources.eamlis.etl import AbandonedMineETL
|
||||
from data_pipeline.tests.sources.example.test_etl import TestETL
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
|
|
|
@ -3,9 +3,7 @@ import pathlib
|
|||
from unittest import mock
|
||||
|
||||
from data_pipeline.etl.base import ValidGeoLevel
|
||||
from data_pipeline.etl.sources.us_army_fuds.etl import (
|
||||
USArmyFUDS,
|
||||
)
|
||||
from data_pipeline.etl.sources.us_army_fuds.etl import USArmyFUDS
|
||||
from data_pipeline.tests.sources.example.test_etl import TestETL
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
|
|
|
@ -20,7 +20,6 @@ from data_pipeline.content.schemas.download_schemas import ExcelConfig
|
|||
from marshmallow import ValidationError
|
||||
from marshmallow_dataclass import class_schema
|
||||
|
||||
|
||||
## zlib is not available on all systems
|
||||
try:
|
||||
import zlib # noqa # pylint: disable=unused-import
|
||||
|
|
|
@ -93,6 +93,8 @@ disable = [
|
|||
"R0801", # Disables duplicate code. There are a couple places we have similar code and
|
||||
# unfortunately you can't disable this rule for individual lines or files, it's a
|
||||
# known bug. https://github.com/PyCQA/pylint/issues/214#
|
||||
"C0411", # Disables wrong-import-order. Import order is now enforced by isort as a
|
||||
# pre-commit hook.
|
||||
]
|
||||
|
||||
[tool.pylint.FORMAT]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue