mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 14:31:16 -07:00
Adding first street foundation data (#1823)
Adding FSF flood and wildfire risk datasets to the score.
This commit is contained in:
parent
ebac552d75
commit
5e378aea81
21 changed files with 430 additions and 82 deletions
|
@ -0,0 +1,3 @@
|
|||
# FSF flood risk data
|
||||
|
||||
Flood risk computed as 1 in 100 year flood zone
|
|
@ -0,0 +1,93 @@
|
|||
# pylint: disable=unsubscriptable-object
|
||||
# pylint: disable=unsupported-assignment-operation
|
||||
|
||||
import pandas as pd
|
||||
from data_pipeline.config import settings
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad, ValidGeoLevel
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class FloodRiskETL(ExtractTransformLoad):
|
||||
"""ETL class for the First Street Foundation flood risk dataset"""
|
||||
|
||||
NAME = "fsf_flood_risk"
|
||||
SOURCE_URL = settings.AWS_JUSTICE40_DATASOURCES_URL + "/fsf_flood.zip"
|
||||
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
|
||||
|
||||
# Output score variables (values set on datasets.yml) for linting purposes
|
||||
COUNT_PROPERTIES: str
|
||||
PROPERTIES_AT_RISK_FROM_FLOODING_TODAY: str
|
||||
PROPERTIES_AT_RISK_FROM_FLOODING_IN_30_YEARS: str
|
||||
SHARE_OF_PROPERTIES_AT_RISK_FROM_FLOODING_TODAY: str
|
||||
SHARE_OF_PROPERTIES_AT_RISK_FROM_FLOODING_IN_30_YEARS: str
|
||||
|
||||
def __init__(self):
|
||||
# define the full path for the input CSV file
|
||||
self.INPUT_CSV = (
|
||||
self.get_tmp_path() / "fsf_flood" / "flood_tract_2010.csv"
|
||||
)
|
||||
|
||||
# this is the main dataframe
|
||||
self.df: pd.DataFrame
|
||||
|
||||
# Start dataset-specific vars here
|
||||
self.COUNT_PROPERTIES_NATIVE_FIELD_NAME = "count_properties"
|
||||
self.COUNT_PROPERTIES_AT_RISK_TODAY = "mid_depth_100_year00"
|
||||
self.COUNT_PROPERTIES_AT_RISK_30_YEARS = "mid_depth_100_year30"
|
||||
self.CLIP_PROPERTIES_COUNT = 250
|
||||
|
||||
def transform(self) -> None:
|
||||
"""Reads the unzipped data file into memory and applies the following
|
||||
transformations to prepare it for the load() method:
|
||||
|
||||
- Renames the Census Tract column to match the other datasets
|
||||
- Calculates share of properties at risk, left-clipping number of properties at 250
|
||||
"""
|
||||
logger.info("Transforming National Risk Index Data")
|
||||
|
||||
logger.info(self.COLUMNS_TO_KEEP)
|
||||
# read in the unzipped csv data source then rename the
|
||||
# Census Tract column for merging
|
||||
df_fsf_flood_disagg: pd.DataFrame = pd.read_csv(
|
||||
self.INPUT_CSV,
|
||||
dtype={self.INPUT_GEOID_TRACT_FIELD_NAME: str},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
df_fsf_flood_disagg[self.GEOID_TRACT_FIELD_NAME] = df_fsf_flood_disagg[
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME
|
||||
].str.zfill(11)
|
||||
|
||||
# Because we have some tracts that are listed twice, we aggregate based on
|
||||
# GEOID10_TRACT. Note that I haven't confirmed this with the FSF boys -- to do!
|
||||
df_fsf_flood = (
|
||||
df_fsf_flood_disagg.groupby(self.GEOID_TRACT_FIELD_NAME)
|
||||
.sum()
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
df_fsf_flood[self.COUNT_PROPERTIES] = df_fsf_flood[
|
||||
self.COUNT_PROPERTIES_NATIVE_FIELD_NAME
|
||||
].clip(lower=self.CLIP_PROPERTIES_COUNT)
|
||||
|
||||
df_fsf_flood[self.SHARE_OF_PROPERTIES_AT_RISK_FROM_FLOODING_TODAY] = (
|
||||
df_fsf_flood[self.COUNT_PROPERTIES_AT_RISK_TODAY]
|
||||
/ df_fsf_flood[self.COUNT_PROPERTIES]
|
||||
)
|
||||
df_fsf_flood[
|
||||
self.SHARE_OF_PROPERTIES_AT_RISK_FROM_FLOODING_IN_30_YEARS
|
||||
] = (
|
||||
df_fsf_flood[self.COUNT_PROPERTIES_AT_RISK_30_YEARS]
|
||||
/ df_fsf_flood[self.COUNT_PROPERTIES]
|
||||
)
|
||||
|
||||
# Assign the final df to the class' output_df for the load method with rename
|
||||
self.output_df = df_fsf_flood.rename(
|
||||
columns={
|
||||
self.COUNT_PROPERTIES_AT_RISK_TODAY: self.PROPERTIES_AT_RISK_FROM_FLOODING_TODAY,
|
||||
self.COUNT_PROPERTIES_AT_RISK_30_YEARS: self.PROPERTIES_AT_RISK_FROM_FLOODING_IN_30_YEARS,
|
||||
}
|
||||
)
|
|
@ -0,0 +1,3 @@
|
|||
# FSF wildfire risk data
|
||||
|
||||
Fire risk computed as >= 0.003 burn risk probability
|
|
@ -0,0 +1,91 @@
|
|||
# pylint: disable=unsubscriptable-object
|
||||
# pylint: disable=unsupported-assignment-operation
|
||||
|
||||
import pandas as pd
|
||||
from data_pipeline.config import settings
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad, ValidGeoLevel
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class WildfireRiskETL(ExtractTransformLoad):
|
||||
"""ETL class for the First Street Foundation wildfire risk dataset"""
|
||||
|
||||
NAME = "fsf_wildfire_risk"
|
||||
SOURCE_URL = settings.AWS_JUSTICE40_DATASOURCES_URL + "/fsf_fire.zip"
|
||||
GEO_LEVEL = ValidGeoLevel.CENSUS_TRACT
|
||||
|
||||
# Output score variables (values set on datasets.yml) for linting purposes
|
||||
COUNT_PROPERTIES: str
|
||||
PROPERTIES_AT_RISK_FROM_FIRE_TODAY: str
|
||||
PROPERTIES_AT_RISK_FROM_FIRE_IN_30_YEARS: str
|
||||
SHARE_OF_PROPERTIES_AT_RISK_FROM_FIRE_TODAY: str
|
||||
SHARE_OF_PROPERTIES_AT_RISK_FROM_FIRE_IN_30_YEARS: str
|
||||
|
||||
def __init__(self):
|
||||
# define the full path for the input CSV file
|
||||
self.INPUT_CSV = (
|
||||
self.get_tmp_path() / "fsf_fire" / "fire_tract_2010.csv"
|
||||
)
|
||||
|
||||
# this is the main dataframe
|
||||
self.df: pd.DataFrame
|
||||
|
||||
# Start dataset-specific vars here
|
||||
self.COUNT_PROPERTIES_NATIVE_FIELD_NAME = "count_properties"
|
||||
self.COUNT_PROPERTIES_AT_RISK_TODAY = "burnprob_year00_flag"
|
||||
self.COUNT_PROPERTIES_AT_RISK_30_YEARS = "burnprob_year30_flag"
|
||||
self.CLIP_PROPERTIES_COUNT = 250
|
||||
|
||||
def transform(self) -> None:
|
||||
"""Reads the unzipped data file into memory and applies the following
|
||||
transformations to prepare it for the load() method:
|
||||
|
||||
- Renames the Census Tract column to match the other datasets
|
||||
- Calculates share of properties at risk, left-clipping number of properties at 250
|
||||
"""
|
||||
logger.info("Transforming National Risk Index Data")
|
||||
|
||||
logger.info(self.COLUMNS_TO_KEEP)
|
||||
# read in the unzipped csv data source then rename the
|
||||
# Census Tract column for merging
|
||||
df_fsf_fire_disagg: pd.DataFrame = pd.read_csv(
|
||||
self.INPUT_CSV,
|
||||
dtype={self.INPUT_GEOID_TRACT_FIELD_NAME: str},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
df_fsf_fire_disagg[self.GEOID_TRACT_FIELD_NAME] = df_fsf_fire_disagg[
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME
|
||||
].str.zfill(11)
|
||||
|
||||
# Because we have some tracts that are listed twice, we aggregate based on
|
||||
# GEOID10_TRACT. Note that I haven't confirmed this with the FSF boys -- to do!
|
||||
df_fsf_fire = (
|
||||
df_fsf_fire_disagg.groupby(self.GEOID_TRACT_FIELD_NAME)
|
||||
.sum()
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
df_fsf_fire[self.COUNT_PROPERTIES] = df_fsf_fire[
|
||||
self.COUNT_PROPERTIES_NATIVE_FIELD_NAME
|
||||
].clip(lower=self.CLIP_PROPERTIES_COUNT)
|
||||
|
||||
df_fsf_fire[self.SHARE_OF_PROPERTIES_AT_RISK_FROM_FIRE_TODAY] = (
|
||||
df_fsf_fire[self.COUNT_PROPERTIES_AT_RISK_TODAY]
|
||||
/ df_fsf_fire[self.COUNT_PROPERTIES]
|
||||
)
|
||||
df_fsf_fire[self.SHARE_OF_PROPERTIES_AT_RISK_FROM_FIRE_IN_30_YEARS] = (
|
||||
df_fsf_fire[self.COUNT_PROPERTIES_AT_RISK_30_YEARS]
|
||||
/ df_fsf_fire[self.COUNT_PROPERTIES]
|
||||
)
|
||||
|
||||
# Assign the final df to the class' output_df for the load method with rename
|
||||
self.output_df = df_fsf_fire.rename(
|
||||
columns={
|
||||
self.COUNT_PROPERTIES_AT_RISK_TODAY: self.PROPERTIES_AT_RISK_FROM_FIRE_TODAY,
|
||||
self.COUNT_PROPERTIES_AT_RISK_30_YEARS: self.PROPERTIES_AT_RISK_FROM_FIRE_IN_30_YEARS,
|
||||
}
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue