mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-25 07:10:16 -07:00
Issue 954: Add various data sources from Child Opportunity Index (#986)
* Adds four fields: * Summer days above 90F * Percent low access to healthy food * Percent impenetrable surface areas * Low third grade reading proficiency * Each of these four gets added into Definition L in various factors. * Additionally, I add college attendance fields to the ETL for Census ACS. * This PR also introduces the notion of "reverse percentiles", relevant to ticket #970.
This commit is contained in:
parent
df564658a5
commit
5a6d6d8557
8 changed files with 357 additions and 40 deletions
|
@ -114,6 +114,27 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
)
|
||||
self.HIGH_SCHOOL_ED_FIELD = "Percent individuals age 25 or over with less than high school degree"
|
||||
|
||||
# College attendance fields
|
||||
self.COLLEGE_ATTENDANCE_TOTAL_POPULATION_ASKED = (
|
||||
"B14004_001E" # Estimate!!Total
|
||||
)
|
||||
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PUBLIC = "B14004_003E" # Estimate!!Total!!Male!!Enrolled in public college or graduate school
|
||||
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PRIVATE = "B14004_008E" # Estimate!!Total!!Male!!Enrolled in private college or graduate school
|
||||
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PUBLIC = "B14004_019E" # Estimate!!Total!!Female!!Enrolled in public college or graduate school
|
||||
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PRIVATE = "B14004_024E" # Estimate!!Total!!Female!!Enrolled in private college or graduate school
|
||||
|
||||
self.COLLEGE_ATTENDANCE_FIELDS = [
|
||||
self.COLLEGE_ATTENDANCE_TOTAL_POPULATION_ASKED,
|
||||
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PUBLIC,
|
||||
self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PRIVATE,
|
||||
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PUBLIC,
|
||||
self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PRIVATE,
|
||||
]
|
||||
|
||||
self.COLLEGE_ATTENDANCE_FIELD = (
|
||||
"Percent enrollment in college or graduate school"
|
||||
)
|
||||
|
||||
self.RE_FIELDS = [
|
||||
"B02001_001E",
|
||||
"B02001_002E",
|
||||
|
@ -156,15 +177,30 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
|
||||
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
||||
|
||||
self.COLUMNS_TO_KEEP = (
|
||||
[
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.UNEMPLOYED_FIELD_NAME,
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
||||
self.HIGH_SCHOOL_ED_FIELD,
|
||||
self.COLLEGE_ATTENDANCE_FIELD,
|
||||
]
|
||||
+ self.RE_OUTPUT_FIELDS
|
||||
+ [self.PERCENT_PREFIX + field for field in self.RE_OUTPUT_FIELDS]
|
||||
)
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
# Define the variables to retrieve
|
||||
variables = (
|
||||
[
|
||||
# Income field
|
||||
self.MEDIAN_INCOME_FIELD,
|
||||
# House value
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD,
|
||||
]
|
||||
+ self.EMPLOYMENT_FIELDS
|
||||
|
@ -172,6 +208,7 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
+ self.POVERTY_FIELDS
|
||||
+ self.EDUCATIONAL_FIELDS
|
||||
+ self.RE_FIELDS
|
||||
+ self.COLLEGE_ATTENDANCE_FIELDS
|
||||
)
|
||||
|
||||
self.df = retrieve_census_acs_data(
|
||||
|
@ -308,6 +345,14 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
df["B03003_003E"] / df["B03003_001E"]
|
||||
)
|
||||
|
||||
# Calculate college attendance:
|
||||
df[self.COLLEGE_ATTENDANCE_FIELD] = (
|
||||
df[self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PUBLIC]
|
||||
+ df[self.COLLEGE_ATTENDANCE_MALE_ENROLLED_PRIVATE]
|
||||
+ df[self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PUBLIC]
|
||||
+ df[self.COLLEGE_ATTENDANCE_FEMALE_ENROLLED_PRIVATE]
|
||||
) / df[self.COLLEGE_ATTENDANCE_TOTAL_POPULATION_ASKED]
|
||||
|
||||
# Save results to self.
|
||||
self.df = df
|
||||
|
||||
|
@ -317,23 +362,7 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
# mkdir census
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
columns_to_include = (
|
||||
[
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.UNEMPLOYED_FIELD_NAME,
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
||||
self.HIGH_SCHOOL_ED_FIELD,
|
||||
]
|
||||
+ self.RE_OUTPUT_FIELDS
|
||||
+ [self.PERCENT_PREFIX + field for field in self.RE_OUTPUT_FIELDS]
|
||||
)
|
||||
|
||||
self.df[columns_to_include].to_csv(
|
||||
self.df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
||||
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.score import field_names
|
||||
from data_pipeline.utils import get_module_logger, unzip_file_from_url
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class ChildOpportunityIndex(ExtractTransformLoad):
|
||||
"""ETL Child Opportunity Index data.
|
||||
|
||||
COI compiles a number of useful data sets. In the future, we could pull these
|
||||
data sets in directly from their original creators.
|
||||
|
||||
Data dictionary available when you download zip from `self.COI_FILE_URL`.
|
||||
|
||||
Data source overview: https://data.diversitydatakids.org/dataset/coi20-child-opportunity-index-2-0-database.
|
||||
|
||||
Full technical documents: https://www.diversitydatakids.org/sites/default/files/2020-02/ddk_coi2.0_technical_documentation_20200212.pdf.
|
||||
|
||||
Github repo: https://github.com/diversitydatakids/COI/
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.COI_FILE_URL = (
|
||||
"https://data.diversitydatakids.org/datastore/zip/f16fff12-b1e5-4f60-85d3-"
|
||||
"3a0ededa30a0?format=csv"
|
||||
)
|
||||
|
||||
self.OUTPUT_PATH: Path = (
|
||||
self.DATA_PATH / "dataset" / "child_opportunity_index"
|
||||
)
|
||||
|
||||
self.TRACT_INPUT_COLUMN_NAME = "geoid"
|
||||
self.EXTREME_HEAT_INPUT_FIELD = "HE_HEAT"
|
||||
self.HEALTHY_FOOD_INPUT_FIELD = "HE_FOOD"
|
||||
self.IMPENETRABLE_SURFACES_INPUT_FIELD = "HE_GREEN"
|
||||
self.READING_INPUT_FIELD = "ED_READING"
|
||||
|
||||
# Constants for output
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
field_names.EXTREME_HEAT_FIELD,
|
||||
field_names.HEALTHY_FOOD_FIELD,
|
||||
field_names.IMPENETRABLE_SURFACES_FIELD,
|
||||
field_names.READING_FIELD,
|
||||
]
|
||||
|
||||
self.raw_df: pd.DataFrame
|
||||
self.output_df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Starting 51MB data download.")
|
||||
|
||||
unzip_file_from_url(
|
||||
file_url=self.COI_FILE_URL,
|
||||
download_path=self.TMP_PATH,
|
||||
unzipped_file_path=self.TMP_PATH / "child_opportunity_index",
|
||||
)
|
||||
|
||||
self.raw_df = pd.read_csv(
|
||||
filepath_or_buffer=self.TMP_PATH
|
||||
/ "child_opportunity_index"
|
||||
/ "raw.csv",
|
||||
# The following need to remain as strings for all of their digits, not get
|
||||
# converted to numbers.
|
||||
dtype={
|
||||
self.TRACT_INPUT_COLUMN_NAME: "string",
|
||||
},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting transforms.")
|
||||
|
||||
output_df = self.raw_df.rename(
|
||||
columns={
|
||||
self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME,
|
||||
self.EXTREME_HEAT_INPUT_FIELD: field_names.EXTREME_HEAT_FIELD,
|
||||
self.HEALTHY_FOOD_INPUT_FIELD: field_names.HEALTHY_FOOD_FIELD,
|
||||
self.IMPENETRABLE_SURFACES_INPUT_FIELD: field_names.IMPENETRABLE_SURFACES_FIELD,
|
||||
self.READING_INPUT_FIELD: field_names.READING_FIELD,
|
||||
}
|
||||
)
|
||||
|
||||
# Sanity check the tract field.
|
||||
if len(output_df[self.GEOID_TRACT_FIELD_NAME].str.len().unique()) != 1:
|
||||
raise ValueError("Wrong tract length.")
|
||||
|
||||
# COI has two rows per tract: one for 2010 and one for 2015.
|
||||
output_df = output_df[output_df["year"] == 2015]
|
||||
|
||||
# Convert percents from 0-100 to 0-1 to standardize with our other fields.
|
||||
percent_fields_to_convert = [
|
||||
field_names.HEALTHY_FOOD_FIELD,
|
||||
field_names.IMPENETRABLE_SURFACES_FIELD,
|
||||
]
|
||||
|
||||
for percent_field_to_convert in percent_fields_to_convert:
|
||||
output_df[percent_field_to_convert] = (
|
||||
output_df[percent_field_to_convert] / 100
|
||||
)
|
||||
|
||||
self.output_df = output_df
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating data.")
|
||||
|
||||
pass
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving CSV")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.output_df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue