mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 17:44:20 -08:00
Issue 308 python linting (#443)
* Adds flake8, pylint, liccheck, flake8 to dependencies for data-pipeline * Sets up and runs black autoformatting * Adds flake8 to tox linting * Fixes flake8 error F541 f string missing placeholders * Fixes flake8 E501 line too long * Fixes flake8 F401 imported but not used * Adds pylint to tox and disables the following pylint errors: - C0114: module docstrings - R0201: method could have been a function - R0903: too few public methods - C0103: name case styling - W0511: fix me - W1203: f-string interpolation in logging * Adds utils.py to tox.ini linting, runs black on utils.py * Fixes import related pylint errors: C0411 and C0412 * Fixes or ignores remaining pylint errors (for discussion later) * Adds safety and liccheck to tox.ini
This commit is contained in:
parent
51f7666062
commit
5504528fdf
22 changed files with 709 additions and 228 deletions
7
data/data-pipeline/.flake8
Normal file
7
data/data-pipeline/.flake8
Normal file
|
@ -0,0 +1,7 @@
|
|||
[flake8]
|
||||
ignore =
|
||||
E266, # to many leading '#' for block comment
|
||||
W503 # line break before binary operator
|
||||
max-line-length = 150
|
||||
max-complexity = 18
|
||||
select = B,C,E,F,W,T4,B9
|
|
@ -1,7 +1,6 @@
|
|||
import click
|
||||
|
||||
from config import settings
|
||||
from etl.sources.census.etl_utils import reset_data_directories as census_reset
|
||||
from utils import (
|
||||
get_module_logger,
|
||||
data_folder_cleanup,
|
||||
|
@ -9,6 +8,7 @@ from utils import (
|
|||
temp_folder_cleanup,
|
||||
)
|
||||
from etl.sources.census.etl import download_census_csvs
|
||||
from etl.sources.census.etl_utils import reset_data_directories as census_reset
|
||||
from etl.runner import etl_runner, score_generate, score_geo
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
@ -30,7 +30,7 @@ def census_cleanup():
|
|||
data_path = settings.APP_ROOT / "data"
|
||||
|
||||
# census directories
|
||||
logger.info(f"Initializing all census data")
|
||||
logger.info("Initializing all census data")
|
||||
census_reset(data_path)
|
||||
|
||||
logger.info("Cleaned up all census data files")
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from dynaconf import Dynaconf
|
||||
from pathlib import Path
|
||||
|
||||
from dynaconf import Dynaconf
|
||||
|
||||
settings = Dynaconf(
|
||||
envvar_prefix="DYNACONF",
|
||||
settings_files=["settings.toml", ".secrets.toml"],
|
||||
|
|
|
@ -1,11 +1,10 @@
|
|||
from pathlib import Path
|
||||
import pathlib
|
||||
|
||||
from config import settings
|
||||
from utils import unzip_file_from_url, remove_all_from_dir
|
||||
|
||||
|
||||
class ExtractTransformLoad(object):
|
||||
class ExtractTransformLoad:
|
||||
"""
|
||||
A class used to instantiate an ETL object to retrieve and process data from
|
||||
datasets.
|
||||
|
@ -34,9 +33,7 @@ class ExtractTransformLoad(object):
|
|||
|
||||
pass
|
||||
|
||||
def extract(
|
||||
self, source_url: str = None, extract_path: Path = None
|
||||
) -> None:
|
||||
def extract(self, source_url: str = None, extract_path: Path = None) -> None:
|
||||
"""Extract the data from
|
||||
a remote source. By default it provides code to get the file from a source url,
|
||||
unzips it and stores it on an extract_path."""
|
||||
|
|
|
@ -67,9 +67,7 @@ def etl_runner(dataset_to_run: str = None) -> None:
|
|||
|
||||
# Run the ETLs for the dataset_list
|
||||
for dataset in dataset_list:
|
||||
etl_module = importlib.import_module(
|
||||
f"etl.sources.{dataset['module_dir']}.etl"
|
||||
)
|
||||
etl_module = importlib.import_module(f"etl.sources.{dataset['module_dir']}.etl")
|
||||
etl_class = getattr(etl_module, dataset["class_name"])
|
||||
etl_instance = etl_class()
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@ import pandas as pd
|
|||
|
||||
from etl.base import ExtractTransformLoad
|
||||
from utils import get_module_logger
|
||||
from etl.sources.census.etl_utils import get_state_fips_codes
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
@ -28,10 +27,10 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.UNEMPLOYED_FIELD_NAME = "Unemployed civilians (percent)"
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME = "Linguistic isolation (percent)"
|
||||
self.HOUSING_BURDEN_FIELD_NAME = "Housing burden (percent)"
|
||||
self.POVERTY_FIELD_NAME = (
|
||||
"Poverty (Less than 200% of federal poverty line)"
|
||||
self.POVERTY_FIELD_NAME = "Poverty (Less than 200% of federal poverty line)"
|
||||
self.HIGH_SCHOOL_FIELD_NAME = (
|
||||
"Percent individuals age 25 or over with less than high school degree"
|
||||
)
|
||||
self.HIGH_SCHOOL_FIELD_NAME = "Percent individuals age 25 or over with less than high school degree"
|
||||
|
||||
# There's another aggregation level (a second level of "buckets").
|
||||
self.AGGREGATION_POLLUTION = "Pollution Burden"
|
||||
|
@ -55,9 +54,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
self.ejscreen_df = pd.read_csv(
|
||||
ejscreen_csv, dtype={"ID": "string"}, low_memory=False
|
||||
)
|
||||
self.ejscreen_df.rename(
|
||||
columns={"ID": self.GEOID_FIELD_NAME}, inplace=True
|
||||
)
|
||||
self.ejscreen_df.rename(columns={"ID": self.GEOID_FIELD_NAME}, inplace=True)
|
||||
|
||||
# Load census data
|
||||
census_csv = self.DATA_PATH / "dataset" / "census_acs_2019" / "usa.csv"
|
||||
|
@ -69,10 +66,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
|
||||
# Load housing and transportation data
|
||||
housing_and_transportation_index_csv = (
|
||||
self.DATA_PATH
|
||||
/ "dataset"
|
||||
/ "housing_and_transportation_index"
|
||||
/ "usa.csv"
|
||||
self.DATA_PATH / "dataset" / "housing_and_transportation_index" / "usa.csv"
|
||||
)
|
||||
self.housing_and_transportation_df = pd.read_csv(
|
||||
housing_and_transportation_index_csv,
|
||||
|
@ -89,7 +83,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming Score Data")
|
||||
logger.info("Transforming Score Data")
|
||||
|
||||
# Join all the data sources that use census block groups
|
||||
census_block_group_dfs = [
|
||||
|
@ -106,10 +100,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
# Sanity check the join.
|
||||
if (
|
||||
len(census_block_group_df[self.GEOID_FIELD_NAME].str.len().unique())
|
||||
!= 1
|
||||
):
|
||||
if len(census_block_group_df[self.GEOID_FIELD_NAME].str.len().unique()) != 1:
|
||||
raise ValueError(
|
||||
f"One of the input CSVs uses {self.GEOID_FIELD_NAME} with a different length."
|
||||
)
|
||||
|
@ -119,9 +110,9 @@ class ScoreETL(ExtractTransformLoad):
|
|||
census_tract_df = self.hud_housing_df
|
||||
|
||||
# Calculate the tract for the CBG data.
|
||||
census_block_group_df[
|
||||
self.GEOID_TRACT_FIELD_NAME
|
||||
] = census_block_group_df[self.GEOID_FIELD_NAME].str[0:11]
|
||||
census_block_group_df[self.GEOID_TRACT_FIELD_NAME] = census_block_group_df[
|
||||
self.GEOID_FIELD_NAME
|
||||
].str[0:11]
|
||||
|
||||
self.df = census_block_group_df.merge(
|
||||
census_tract_df, on=self.GEOID_TRACT_FIELD_NAME
|
||||
|
@ -254,8 +245,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
|
||||
# Rename columns:
|
||||
renaming_dict = {
|
||||
data_set.input_field: data_set.renamed_field
|
||||
for data_set in data_sets
|
||||
data_set.input_field: data_set.renamed_field for data_set in data_sets
|
||||
}
|
||||
|
||||
self.df.rename(
|
||||
|
@ -310,7 +300,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
) / (max_value - min_value)
|
||||
|
||||
# Graph distributions and correlations.
|
||||
min_max_fields = [
|
||||
min_max_fields = [ # noqa: F841
|
||||
f"{data_set.renamed_field}{self.MIN_MAX_FIELD_SUFFIX}"
|
||||
for data_set in data_sets
|
||||
if data_set.renamed_field != self.GEOID_FIELD_NAME
|
||||
|
@ -324,9 +314,7 @@ class ScoreETL(ExtractTransformLoad):
|
|||
]
|
||||
].mean(axis=1)
|
||||
self.df["Score B"] = (
|
||||
self.df[
|
||||
"Poverty (Less than 200% of federal poverty line) (percentile)"
|
||||
]
|
||||
self.df["Poverty (Less than 200% of federal poverty line) (percentile)"]
|
||||
* self.df[
|
||||
"Percent individuals age 25 or over with less than high school degree (percentile)"
|
||||
]
|
||||
|
@ -342,21 +330,26 @@ class ScoreETL(ExtractTransformLoad):
|
|||
]
|
||||
self.df[f"{bucket}"] = self.df[fields_in_bucket].mean(axis=1)
|
||||
|
||||
# Combine the score from the two Exposures and Environmental Effects buckets into a single score called "Pollution Burden". The math for this score is: (1.0 * Exposures Score + 0.5 * Environment Effects score) / 1.5.
|
||||
# Combine the score from the two Exposures and Environmental Effects buckets
|
||||
# into a single score called "Pollution Burden".
|
||||
# The math for this score is:
|
||||
# (1.0 * Exposures Score + 0.5 * Environment Effects score) / 1.5.
|
||||
self.df[self.AGGREGATION_POLLUTION] = (
|
||||
1.0 * self.df[f"{self.BUCKET_EXPOSURES}"]
|
||||
+ 0.5 * self.df[f"{self.BUCKET_ENVIRONMENTAL}"]
|
||||
) / 1.5
|
||||
|
||||
# Average the score from the two Sensitive populations and Socioeconomic factors buckets into a single score called "Population Characteristics".
|
||||
# Average the score from the two Sensitive populations and
|
||||
# Socioeconomic factors buckets into a single score called
|
||||
# "Population Characteristics".
|
||||
self.df[self.AGGREGATION_POPULATION] = self.df[
|
||||
[f"{self.BUCKET_SENSITIVE}", f"{self.BUCKET_SOCIOECONOMIC}"]
|
||||
].mean(axis=1)
|
||||
|
||||
# Multiply the "Pollution Burden" score and the "Population Characteristics" together to produce the cumulative impact score.
|
||||
# Multiply the "Pollution Burden" score and the "Population Characteristics"
|
||||
# together to produce the cumulative impact score.
|
||||
self.df["Score C"] = (
|
||||
self.df[self.AGGREGATION_POLLUTION]
|
||||
* self.df[self.AGGREGATION_POPULATION]
|
||||
self.df[self.AGGREGATION_POLLUTION] * self.df[self.AGGREGATION_POPULATION]
|
||||
)
|
||||
|
||||
if len(census_block_group_df) > 220333:
|
||||
|
@ -371,12 +364,10 @@ class ScoreETL(ExtractTransformLoad):
|
|||
]
|
||||
|
||||
fields_min_max = [
|
||||
f"{field}{self.MIN_MAX_FIELD_SUFFIX}"
|
||||
for field in fields_to_use_in_score
|
||||
f"{field}{self.MIN_MAX_FIELD_SUFFIX}" for field in fields_to_use_in_score
|
||||
]
|
||||
fields_percentile = [
|
||||
f"{field}{self.PERCENTILE_FIELD_SUFFIX}"
|
||||
for field in fields_to_use_in_score
|
||||
f"{field}{self.PERCENTILE_FIELD_SUFFIX}" for field in fields_to_use_in_score
|
||||
]
|
||||
|
||||
# Calculate "Score D", which uses min-max normalization
|
||||
|
@ -396,17 +387,22 @@ class ScoreETL(ExtractTransformLoad):
|
|||
"Score E",
|
||||
"Poverty (Less than 200% of federal poverty line)",
|
||||
]:
|
||||
self.df[f"{score_field}{self.PERCENTILE_FIELD_SUFFIX}"] = self.df[score_field].rank(pct=True)
|
||||
self.df[f"{score_field}{self.PERCENTILE_FIELD_SUFFIX}"] = self.df[
|
||||
score_field
|
||||
].rank(pct=True)
|
||||
|
||||
for threshold in [0.25, 0.3, 0.35, 0.4]:
|
||||
fraction_converted_to_percent = int(100 * threshold)
|
||||
self.df[f"{score_field} (top {fraction_converted_to_percent}th percentile)"] = (
|
||||
self.df[f"{score_field}{self.PERCENTILE_FIELD_SUFFIX}"] >= 1 - threshold
|
||||
self.df[
|
||||
f"{score_field} (top {fraction_converted_to_percent}th percentile)"
|
||||
] = (
|
||||
self.df[f"{score_field}{self.PERCENTILE_FIELD_SUFFIX}"]
|
||||
>= 1 - threshold
|
||||
)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving Score CSV")
|
||||
logger.info("Saving Score CSV")
|
||||
|
||||
# write nationwide csv
|
||||
self.SCORE_CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_csv(self.SCORE_CSV_PATH / f"usa.csv", index=False)
|
||||
self.df.to_csv(self.SCORE_CSV_PATH / "usa.csv", index=False)
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import math
|
||||
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
import math
|
||||
|
||||
from etl.base import ExtractTransformLoad
|
||||
from utils import get_module_logger
|
||||
|
@ -21,9 +22,7 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
self.SCORE_CSV_PATH = self.DATA_PATH / "score" / "csv"
|
||||
self.TILE_SCORE_CSV = self.SCORE_CSV_PATH / "tiles" / "usa.csv"
|
||||
|
||||
self.CENSUS_USA_GEOJSON = (
|
||||
self.DATA_PATH / "census" / "geojson" / "us.json"
|
||||
)
|
||||
self.CENSUS_USA_GEOJSON = self.DATA_PATH / "census" / "geojson" / "us.json"
|
||||
|
||||
self.TARGET_SCORE_NAME = "Score E (percentile)"
|
||||
self.TARGET_SCORE_RENAME_TO = "E_SCORE"
|
||||
|
@ -36,7 +35,7 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
self.geojson_score_usa_low: gpd.GeoDataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(f"Reading US GeoJSON (~6 minutes)")
|
||||
logger.info("Reading US GeoJSON (~6 minutes)")
|
||||
self.geojson_usa_df = gpd.read_file(
|
||||
self.CENSUS_USA_GEOJSON,
|
||||
dtype={"GEOID10": "string"},
|
||||
|
@ -45,7 +44,7 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
self.geojson_usa_df.head()
|
||||
|
||||
logger.info(f"Reading score CSV")
|
||||
logger.info("Reading score CSV")
|
||||
self.score_usa_df = pd.read_csv(
|
||||
self.TILE_SCORE_CSV,
|
||||
dtype={"GEOID10": "string"},
|
||||
|
@ -53,11 +52,11 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Pruning Census GeoJSON")
|
||||
logger.info("Pruning Census GeoJSON")
|
||||
fields = ["GEOID10", "geometry"]
|
||||
self.geojson_usa_df = self.geojson_usa_df[fields]
|
||||
|
||||
logger.info(f"Merging and compressing score CSV with USA GeoJSON")
|
||||
logger.info("Merging and compressing score CSV with USA GeoJSON")
|
||||
self.geojson_score_usa_high = self.score_usa_df.merge(
|
||||
self.geojson_usa_df, on="GEOID10", how="left"
|
||||
)
|
||||
|
@ -75,7 +74,7 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
inplace=True,
|
||||
)
|
||||
|
||||
logger.info(f"Aggregating into tracts (~5 minutes)")
|
||||
logger.info("Aggregating into tracts (~5 minutes)")
|
||||
usa_tracts = self._aggregate_to_tracts(usa_simplified)
|
||||
|
||||
usa_tracts = gpd.GeoDataFrame(
|
||||
|
@ -84,17 +83,15 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
crs="EPSG:4326",
|
||||
)
|
||||
|
||||
logger.info(f"Creating buckets from tracts")
|
||||
logger.info("Creating buckets from tracts")
|
||||
usa_bucketed = self._create_buckets_from_tracts(
|
||||
usa_tracts, self.NUMBER_OF_BUCKETS
|
||||
)
|
||||
|
||||
logger.info(f"Aggregating buckets")
|
||||
logger.info("Aggregating buckets")
|
||||
usa_aggregated = self._aggregate_buckets(usa_bucketed, agg_func="mean")
|
||||
|
||||
compressed = self._breakup_multipolygons(
|
||||
usa_aggregated, self.NUMBER_OF_BUCKETS
|
||||
)
|
||||
compressed = self._breakup_multipolygons(usa_aggregated, self.NUMBER_OF_BUCKETS)
|
||||
|
||||
self.geojson_score_usa_low = gpd.GeoDataFrame(
|
||||
compressed,
|
||||
|
@ -118,9 +115,7 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
# assign tracts to buckets by D_SCORE
|
||||
state_tracts.sort_values(self.TARGET_SCORE_RENAME_TO, inplace=True)
|
||||
SCORE_bucket = []
|
||||
bucket_size = math.ceil(
|
||||
len(state_tracts.index) / self.NUMBER_OF_BUCKETS
|
||||
)
|
||||
bucket_size = math.ceil(len(state_tracts.index) / self.NUMBER_OF_BUCKETS)
|
||||
for i in range(len(state_tracts.index)):
|
||||
SCORE_bucket.extend([math.floor(i / bucket_size)])
|
||||
state_tracts[f"{self.TARGET_SCORE_RENAME_TO}_bucket"] = SCORE_bucket
|
||||
|
@ -155,14 +150,10 @@ class GeoScoreETL(ExtractTransformLoad):
|
|||
return compressed
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Writing usa-high (~9 minutes)")
|
||||
self.geojson_score_usa_high.to_file(
|
||||
self.SCORE_HIGH_GEOJSON, driver="GeoJSON"
|
||||
)
|
||||
logger.info(f"Completed writing usa-high")
|
||||
logger.info("Writing usa-high (~9 minutes)")
|
||||
self.geojson_score_usa_high.to_file(self.SCORE_HIGH_GEOJSON, driver="GeoJSON")
|
||||
logger.info("Completed writing usa-high")
|
||||
|
||||
logger.info(f"Writing usa-low (~9 minutes)")
|
||||
self.geojson_score_usa_low.to_file(
|
||||
self.SCORE_LOW_GEOJSON, driver="GeoJSON"
|
||||
)
|
||||
logger.info(f"Completed writing usa-low")
|
||||
logger.info("Writing usa-low (~9 minutes)")
|
||||
self.geojson_score_usa_low.to_file(self.SCORE_LOW_GEOJSON, driver="GeoJSON")
|
||||
logger.info("Completed writing usa-low")
|
||||
|
|
|
@ -19,9 +19,7 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
self.CENSUS_USA_CSV = self.DATA_PATH / "census" / "csv" / "us.csv"
|
||||
self.SCORE_CSV_PATH = self.DATA_PATH / "score" / "csv"
|
||||
|
||||
self.STATE_CSV = (
|
||||
self.DATA_PATH / "census" / "csv" / "fips_states_2010.csv"
|
||||
)
|
||||
self.STATE_CSV = self.DATA_PATH / "census" / "csv" / "fips_states_2010.csv"
|
||||
|
||||
self.FULL_SCORE_CSV = self.SCORE_CSV_PATH / "full" / "usa.csv"
|
||||
self.TILR_SCORE_CSV = self.SCORE_CSV_PATH / "tile" / "usa.csv"
|
||||
|
@ -49,7 +47,7 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
self.TMP_PATH,
|
||||
)
|
||||
|
||||
logger.info(f"Reading Counties CSV")
|
||||
logger.info("Reading Counties CSV")
|
||||
self.counties_df = pd.read_csv(
|
||||
self.CENSUS_COUNTIES_TXT,
|
||||
sep="\t",
|
||||
|
@ -58,16 +56,14 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
encoding="latin-1",
|
||||
)
|
||||
|
||||
logger.info(f"Reading States CSV")
|
||||
logger.info("Reading States CSV")
|
||||
self.states_df = pd.read_csv(
|
||||
self.STATE_CSV, dtype={"fips": "string", "state_code": "string"}
|
||||
)
|
||||
self.score_df = pd.read_csv(
|
||||
self.FULL_SCORE_CSV, dtype={"GEOID10": "string"}
|
||||
)
|
||||
self.score_df = pd.read_csv(self.FULL_SCORE_CSV, dtype={"GEOID10": "string"})
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming data sources for Score + County CSV")
|
||||
logger.info("Transforming data sources for Score + County CSV")
|
||||
|
||||
# rename some of the columns to prepare for merge
|
||||
self.counties_df = self.counties_df[["USPS", "GEOID", "NAME"]]
|
||||
|
@ -101,7 +97,7 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
# check if there are census cbgs without score
|
||||
logger.info(f"Removing CBG rows without score")
|
||||
logger.info("Removing CBG rows without score")
|
||||
|
||||
## load cbgs
|
||||
cbg_usa_df = pd.read_csv(
|
||||
|
@ -121,19 +117,19 @@ class PostScoreETL(ExtractTransformLoad):
|
|||
null_cbg_df = merged_df[merged_df["Score E (percentile)"].isnull()]
|
||||
|
||||
# subsctract data sets
|
||||
removed_df = pd.concat(
|
||||
[merged_df, null_cbg_df, null_cbg_df]
|
||||
).drop_duplicates(keep=False)
|
||||
removed_df = pd.concat([merged_df, null_cbg_df, null_cbg_df]).drop_duplicates(
|
||||
keep=False
|
||||
)
|
||||
|
||||
# set the score to the new df
|
||||
self.score_county_state_merged = removed_df
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving Full Score CSV with County Information")
|
||||
logger.info("Saving Full Score CSV with County Information")
|
||||
self.SCORE_CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.score_county_state_merged.to_csv(self.FULL_SCORE_CSV, index=False)
|
||||
|
||||
logger.info(f"Saving Tile Score CSV")
|
||||
logger.info("Saving Tile Score CSV")
|
||||
# TODO: check which are the columns we'll use
|
||||
# Related to: https://github.com/usds/justice40-tool/issues/302
|
||||
score_tiles = self.score_county_state_merged[self.TILES_SCORE_COLUMNS]
|
||||
|
|
|
@ -9,16 +9,12 @@ logger = get_module_logger(__name__)
|
|||
class CalEnviroScreenETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.CALENVIROSCREEN_FTP_URL = "https://justice40-data.s3.amazonaws.com/data-sources/CalEnviroScreen_4.0_2021.zip"
|
||||
self.CALENVIROSCREEN_CSV = (
|
||||
self.TMP_PATH / "CalEnviroScreen_4.0_2021.csv"
|
||||
)
|
||||
self.CALENVIROSCREEN_CSV = self.TMP_PATH / "CalEnviroScreen_4.0_2021.csv"
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "calenviroscreen4"
|
||||
|
||||
# Definining some variable names
|
||||
self.CALENVIROSCREEN_SCORE_FIELD_NAME = "calenviroscreen_score"
|
||||
self.CALENVIROSCREEN_PERCENTILE_FIELD_NAME = (
|
||||
"calenviroscreen_percentile"
|
||||
)
|
||||
self.CALENVIROSCREEN_PERCENTILE_FIELD_NAME = "calenviroscreen_percentile"
|
||||
self.CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD_NAME = (
|
||||
"calenviroscreen_priority_community"
|
||||
)
|
||||
|
@ -30,14 +26,14 @@ class CalEnviroScreenETL(ExtractTransformLoad):
|
|||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(f"Downloading CalEnviroScreen Data")
|
||||
logger.info("Downloading CalEnviroScreen Data")
|
||||
super().extract(
|
||||
self.CALENVIROSCREEN_FTP_URL,
|
||||
self.TMP_PATH,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming CalEnviroScreen Data")
|
||||
logger.info("Transforming CalEnviroScreen Data")
|
||||
|
||||
# Data from https://calenviroscreen-oehha.hub.arcgis.com/#Data, specifically:
|
||||
# https://oehha.ca.gov/media/downloads/calenviroscreen/document/calenviroscreen40resultsdatadictionaryd12021.zip
|
||||
|
@ -67,7 +63,7 @@ class CalEnviroScreenETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving CalEnviroScreen CSV")
|
||||
logger.info("Saving CalEnviroScreen CSV")
|
||||
# write nationwide csv
|
||||
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_csv(self.CSV_PATH / f"data06.csv", index=False)
|
||||
self.df.to_csv(self.CSV_PATH / "data06.csv", index=False)
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
import csv
|
||||
import os
|
||||
import csv
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import geopandas as gpd
|
||||
|
||||
from .etl_utils import get_state_fips_codes
|
||||
from utils import unzip_file_from_url, get_module_logger
|
||||
from .etl_utils import get_state_fips_codes
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
@ -29,9 +30,7 @@ def download_census_csvs(data_path: Path) -> None:
|
|||
|
||||
for fips in state_fips_codes:
|
||||
# check if file exists
|
||||
shp_file_path = (
|
||||
data_path / "census" / "shp" / fips / f"tl_2010_{fips}_bg10.shp"
|
||||
)
|
||||
shp_file_path = data_path / "census" / "shp" / fips / f"tl_2010_{fips}_bg10.shp"
|
||||
|
||||
logger.info(f"Checking if {fips} file exists")
|
||||
if not os.path.isfile(shp_file_path):
|
||||
|
@ -110,7 +109,7 @@ def download_census_csvs(data_path: Path) -> None:
|
|||
)
|
||||
|
||||
## create national geojson
|
||||
logger.info(f"Generating national geojson file")
|
||||
logger.info("Generating national geojson file")
|
||||
usa_df = gpd.GeoDataFrame()
|
||||
|
||||
for file_name in geojson_dir_path.rglob("*.json"):
|
||||
|
@ -119,7 +118,7 @@ def download_census_csvs(data_path: Path) -> None:
|
|||
usa_df = usa_df.append(state_gdf)
|
||||
|
||||
usa_df = usa_df.to_crs("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
||||
logger.info(f"Writing national geojson file")
|
||||
logger.info("Writing national geojson file")
|
||||
usa_df.to_file(geojson_dir_path / "us.json", driver="GeoJSON")
|
||||
|
||||
logger.info("Census block groups downloading complete")
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from pathlib import Path
|
||||
import csv
|
||||
import pandas as pd
|
||||
import os
|
||||
import csv
|
||||
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
from config import settings
|
||||
|
||||
from utils import (
|
||||
|
@ -35,7 +36,7 @@ def get_state_fips_codes(data_path: Path) -> list:
|
|||
|
||||
# check if file exists
|
||||
if not os.path.isfile(fips_csv_path):
|
||||
logger.info(f"Downloading fips from S3 repository")
|
||||
logger.info("Downloading fips from S3 repository")
|
||||
unzip_file_from_url(
|
||||
settings.AWS_JUSTICE40_DATA_URL + "/Census/fips_states_2010.zip",
|
||||
data_path / "tmp",
|
||||
|
|
|
@ -11,14 +11,10 @@ logger = get_module_logger(__name__)
|
|||
class CensusACSETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.ACS_YEAR = 2019
|
||||
self.OUTPUT_PATH = (
|
||||
self.DATA_PATH / "dataset" / f"census_acs_{self.ACS_YEAR}"
|
||||
)
|
||||
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / f"census_acs_{self.ACS_YEAR}"
|
||||
self.UNEMPLOYED_FIELD_NAME = "Unemployed civilians (percent)"
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME = "Linguistic isolation (percent)"
|
||||
self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = (
|
||||
"Linguistic isolation (total)"
|
||||
)
|
||||
self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = "Linguistic isolation (total)"
|
||||
self.LINGUISTIC_ISOLATION_FIELDS = [
|
||||
"C16002_001E",
|
||||
"C16002_004E",
|
||||
|
@ -28,9 +24,7 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
]
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def _fips_from_censusdata_censusgeo(
|
||||
self, censusgeo: censusdata.censusgeo
|
||||
) -> str:
|
||||
def _fips_from_censusdata_censusgeo(self, censusgeo: censusdata.censusgeo) -> str:
|
||||
"""Create a FIPS code from the proprietary censusgeo index."""
|
||||
fips = "".join([value for (key, value) in censusgeo.params()])
|
||||
return fips
|
||||
|
@ -38,9 +32,7 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
def extract(self) -> None:
|
||||
dfs = []
|
||||
for fips in get_state_fips_codes(self.DATA_PATH):
|
||||
logger.info(
|
||||
f"Downloading data for state/territory with FIPS code {fips}"
|
||||
)
|
||||
logger.info(f"Downloading data for state/territory with FIPS code {fips}")
|
||||
|
||||
dfs.append(
|
||||
censusdata.download(
|
||||
|
@ -65,13 +57,11 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Starting Census ACS Transform")
|
||||
logger.info("Starting Census ACS Transform")
|
||||
|
||||
# Calculate percent unemployment.
|
||||
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
||||
self.df[self.UNEMPLOYED_FIELD_NAME] = (
|
||||
self.df.B23025_005E / self.df.B23025_003E
|
||||
)
|
||||
self.df[self.UNEMPLOYED_FIELD_NAME] = self.df.B23025_005E / self.df.B23025_003E
|
||||
|
||||
# Calculate linguistic isolation.
|
||||
individual_limited_english_fields = [
|
||||
|
@ -92,7 +82,7 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME].describe()
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving Census ACS Data")
|
||||
logger.info("Saving Census ACS Data")
|
||||
|
||||
# mkdir census
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
@ -108,6 +98,6 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info(f"Validating Census ACS Data")
|
||||
logger.info("Validating Census ACS Data")
|
||||
|
||||
pass
|
||||
|
|
|
@ -8,20 +8,22 @@ logger = get_module_logger(__name__)
|
|||
|
||||
class EJScreenETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.EJSCREEN_FTP_URL = "https://gaftp.epa.gov/EJSCREEN/2019/EJSCREEN_2019_StatePctile.csv.zip"
|
||||
self.EJSCREEN_FTP_URL = (
|
||||
"https://gaftp.epa.gov/EJSCREEN/2019/EJSCREEN_2019_StatePctile.csv.zip"
|
||||
)
|
||||
self.EJSCREEN_CSV = self.TMP_PATH / "EJSCREEN_2019_StatePctiles.csv"
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "ejscreen_2019"
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(f"Downloading EJScreen Data")
|
||||
logger.info("Downloading EJScreen Data")
|
||||
super().extract(
|
||||
self.EJSCREEN_FTP_URL,
|
||||
self.TMP_PATH,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming EJScreen Data")
|
||||
logger.info("Transforming EJScreen Data")
|
||||
self.df = pd.read_csv(
|
||||
self.EJSCREEN_CSV,
|
||||
dtype={"ID": "string"},
|
||||
|
@ -31,7 +33,7 @@ class EJScreenETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving EJScreen CSV")
|
||||
logger.info("Saving EJScreen CSV")
|
||||
# write nationwide csv
|
||||
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_csv(self.CSV_PATH / f"usa.csv", index=False)
|
||||
self.df.to_csv(self.CSV_PATH / "usa.csv", index=False)
|
||||
|
|
|
@ -35,9 +35,7 @@ class HousingTransportationETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
# New file name:
|
||||
tmp_csv_file_path = (
|
||||
zip_file_dir / f"htaindex_data_blkgrps_{fips}.csv"
|
||||
)
|
||||
tmp_csv_file_path = zip_file_dir / f"htaindex_data_blkgrps_{fips}.csv"
|
||||
tmp_df = pd.read_csv(filepath_or_buffer=tmp_csv_file_path)
|
||||
|
||||
dfs.append(tmp_df)
|
||||
|
@ -45,16 +43,16 @@ class HousingTransportationETL(ExtractTransformLoad):
|
|||
self.df = pd.concat(dfs)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming Housing and Transportation Data")
|
||||
logger.info("Transforming Housing and Transportation Data")
|
||||
|
||||
# Rename and reformat block group ID
|
||||
self.df.rename(columns={"blkgrp": self.GEOID_FIELD_NAME}, inplace=True)
|
||||
self.df[self.GEOID_FIELD_NAME] = self.df[
|
||||
self.GEOID_FIELD_NAME
|
||||
].str.replace('"', "")
|
||||
self.df[self.GEOID_FIELD_NAME] = self.df[self.GEOID_FIELD_NAME].str.replace(
|
||||
'"', ""
|
||||
)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving Housing and Transportation Data")
|
||||
logger.info("Saving Housing and Transportation Data")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_csv(path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False)
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import pandas as pd
|
||||
|
||||
from etl.base import ExtractTransformLoad
|
||||
from etl.sources.census.etl_utils import get_state_fips_codes
|
||||
from utils import get_module_logger, unzip_file_from_url, remove_all_from_dir
|
||||
from utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
@ -11,33 +10,37 @@ class HudHousingETL(ExtractTransformLoad):
|
|||
def __init__(self):
|
||||
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "hud_housing"
|
||||
self.GEOID_TRACT_FIELD_NAME = "GEOID10_TRACT"
|
||||
self.HOUSING_FTP_URL = "https://www.huduser.gov/portal/datasets/cp/2012thru2016-140-csv.zip"
|
||||
self.HOUSING_FTP_URL = (
|
||||
"https://www.huduser.gov/portal/datasets/cp/2012thru2016-140-csv.zip"
|
||||
)
|
||||
self.HOUSING_ZIP_FILE_DIR = self.TMP_PATH / "hud_housing"
|
||||
|
||||
# We measure households earning less than 80% of HUD Area Median Family Income by county
|
||||
# and paying greater than 30% of their income to housing costs.
|
||||
self.HOUSING_BURDEN_FIELD_NAME = "Housing burden (percent)"
|
||||
self.HOUSING_BURDEN_NUMERATOR_FIELD_NAME = "HOUSING_BURDEN_NUMERATOR"
|
||||
self.HOUSING_BURDEN_DENOMINATOR_FIELD_NAME = (
|
||||
"HOUSING_BURDEN_DENOMINATOR"
|
||||
)
|
||||
self.HOUSING_BURDEN_DENOMINATOR_FIELD_NAME = "HOUSING_BURDEN_DENOMINATOR"
|
||||
|
||||
# Note: some variable definitions.
|
||||
# HUD-adjusted median family income (HAMFI).
|
||||
# The four housing problems are: incomplete kitchen facilities, incomplete plumbing facilities, more than 1 person per room, and cost burden greater than 30%.
|
||||
# The four housing problems are:
|
||||
# - incomplete kitchen facilities,
|
||||
# - incomplete plumbing facilities,
|
||||
# - more than 1 person per room,
|
||||
# - cost burden greater than 30%.
|
||||
# Table 8 is the desired table.
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(f"Extracting HUD Housing Data")
|
||||
logger.info("Extracting HUD Housing Data")
|
||||
super().extract(
|
||||
self.HOUSING_FTP_URL,
|
||||
self.HOUSING_ZIP_FILE_DIR,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming HUD Housing Data")
|
||||
logger.info("Transforming HUD Housing Data")
|
||||
|
||||
# New file name:
|
||||
tmp_csv_file_path = (
|
||||
|
@ -53,9 +56,7 @@ class HudHousingETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
# Rename and reformat block group ID
|
||||
self.df.rename(
|
||||
columns={"geoid": self.GEOID_TRACT_FIELD_NAME}, inplace=True
|
||||
)
|
||||
self.df.rename(columns={"geoid": self.GEOID_TRACT_FIELD_NAME}, inplace=True)
|
||||
|
||||
# The CHAS data has census tract ids such as `14000US01001020100`
|
||||
# Whereas the rest of our data uses, for the same tract, `01001020100`.
|
||||
|
@ -70,69 +71,177 @@ class HudHousingETL(ExtractTransformLoad):
|
|||
|
||||
# Owner occupied numerator fields
|
||||
OWNER_OCCUPIED_NUMERATOR_FIELDS = [
|
||||
# Key: Column Name Line_Type Tenure Household income Cost burden Facilities
|
||||
# T8_est7 Subtotal Owner occupied less than or equal to 30% of HAMFI greater than 30% but less than or equal to 50% All
|
||||
# Column Name
|
||||
# Line_Type
|
||||
# Tenure
|
||||
# Household income
|
||||
# Cost burden
|
||||
# Facilities
|
||||
"T8_est7",
|
||||
# T8_est10 Subtotal Owner occupied less than or equal to 30% of HAMFI greater than 50% All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# less than or equal to 30% of HAMFI
|
||||
# greater than 30% but less than or equal to 50%
|
||||
# All
|
||||
"T8_est10",
|
||||
# T8_est20 Subtotal Owner occupied greater than 30% but less than or equal to 50% of HAMFI greater than 30% but less than or equal to 50% All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# less than or equal to 30% of HAMFI
|
||||
# greater than 50%
|
||||
# All
|
||||
"T8_est20",
|
||||
# T8_est23 Subtotal Owner occupied greater than 30% but less than or equal to 50% of HAMFI greater than 50% All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 30% but less than or equal to 50% of HAMFI
|
||||
# greater than 30% but less than or equal to 50%
|
||||
# All
|
||||
"T8_est23",
|
||||
# T8_est33 Subtotal Owner occupied greater than 50% but less than or equal to 80% of HAMFI greater than 30% but less than or equal to 50% All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 30% but less than or equal to 50% of HAMFI
|
||||
# greater than 50%
|
||||
# All
|
||||
"T8_est33",
|
||||
# T8_est36 Subtotal Owner occupied greater than 50% but less than or equal to 80% of HAMFI greater than 50% All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 50% but less than or equal to 80% of HAMFI
|
||||
# greater than 30% but less than or equal to 50%
|
||||
# All
|
||||
"T8_est36",
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 50% but less than or equal to 80% of HAMFI
|
||||
# greater than 50%
|
||||
# All
|
||||
]
|
||||
|
||||
# These rows have the values where HAMFI was not computed, b/c of no or negative income.
|
||||
OWNER_OCCUPIED_NOT_COMPUTED_FIELDS = [
|
||||
# Key: Column Name Line_Type Tenure Household income Cost burden Facilities
|
||||
# T8_est13 Subtotal Owner occupied less than or equal to 30% of HAMFI not computed (no/negative income) All
|
||||
# Column Name
|
||||
# Line_Type
|
||||
# Tenure
|
||||
# Household income
|
||||
# Cost burden
|
||||
# Facilities
|
||||
"T8_est13",
|
||||
# T8_est26 Subtotal Owner occupied greater than 30% but less than or equal to 50% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# less than or equal to 30% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est26",
|
||||
# T8_est39 Subtotal Owner occupied greater than 50% but less than or equal to 80% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 30% but less than or equal to 50% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est39",
|
||||
# T8_est52 Subtotal Owner occupied greater than 80% but less than or equal to 100% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 50% but less than or equal to 80% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est52",
|
||||
# T8_est65 Subtotal Owner occupied greater than 100% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 80% but less than or equal to 100% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est65",
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# greater than 100% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
]
|
||||
|
||||
# T8_est2 Subtotal Owner occupied All All All
|
||||
OWNER_OCCUPIED_POPULATION_FIELD = "T8_est2"
|
||||
# Subtotal
|
||||
# Owner occupied
|
||||
# All
|
||||
# All
|
||||
# All
|
||||
|
||||
# Renter occupied numerator fields
|
||||
RENTER_OCCUPIED_NUMERATOR_FIELDS = [
|
||||
# Key: Column Name Line_Type Tenure Household income Cost burden Facilities
|
||||
# T8_est73 Subtotal Renter occupied less than or equal to 30% of HAMFI greater than 30% but less than or equal to 50% All
|
||||
# Column Name
|
||||
# Line_Type
|
||||
# Tenure
|
||||
# Household income
|
||||
# Cost burden
|
||||
# Facilities
|
||||
"T8_est73",
|
||||
# T8_est76 Subtotal Renter occupied less than or equal to 30% of HAMFI greater than 50% All
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# less than or equal to 30% of HAMFI
|
||||
# greater than 30% but less than or equal to 50%
|
||||
# All
|
||||
"T8_est76",
|
||||
# T8_est86 Subtotal Renter occupied greater than 30% but less than or equal to 50% of HAMFI greater than 30% but less than or equal to 50% All
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# less than or equal to 30% of HAMFI
|
||||
# greater than 50%
|
||||
# All
|
||||
"T8_est86",
|
||||
# T8_est89 Subtotal Renter occupied greater than 30% but less than or equal to 50% of HAMFI greater than 50% All
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# greater than 30% but less than or equal to 50% of HAMFI
|
||||
# greater than 30% but less than or equal to 50%
|
||||
# All
|
||||
"T8_est89",
|
||||
# T8_est99 Subtotal Renter occupied greater than 50% but less than or equal to 80% of HAMFI greater than 30% but less than or equal to 50% All
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# greater than 30% but less than or equal to 50% of HAMFI
|
||||
# greater than 50%
|
||||
# All
|
||||
"T8_est99",
|
||||
# T8_est102 Subtotal Renter occupied greater than 50% but less than or equal to 80% of HAMFI greater than 50% All
|
||||
# Subtotal
|
||||
# Renter occupied greater than 50% but less than or equal to 80% of HAMFI
|
||||
# greater than 30% but less than or equal to 50%
|
||||
# All
|
||||
"T8_est102",
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# greater than 50% but less than or equal to 80% of HAMFI
|
||||
# greater than 50%
|
||||
# All
|
||||
]
|
||||
|
||||
# These rows have the values where HAMFI was not computed, b/c of no or negative income.
|
||||
RENTER_OCCUPIED_NOT_COMPUTED_FIELDS = [
|
||||
# Key: Column Name Line_Type Tenure Household income Cost burden Facilities
|
||||
# T8_est79 Subtotal Renter occupied less than or equal to 30% of HAMFI not computed (no/negative income) All
|
||||
# Column Name
|
||||
# Line_Type
|
||||
# Tenure
|
||||
# Household income
|
||||
# Cost burden
|
||||
# Facilities
|
||||
"T8_est79",
|
||||
# T8_est92 Subtotal Renter occupied greater than 30% but less than or equal to 50% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Renter occupied less than or equal to 30% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est92",
|
||||
# T8_est105 Subtotal Renter occupied greater than 50% but less than or equal to 80% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Renter occupied greater than 30% but less than or equal to 50% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est105",
|
||||
# T8_est118 Subtotal Renter occupied greater than 80% but less than or equal to 100% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# greater than 50% but less than or equal to 80% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est118",
|
||||
# T8_est131 Subtotal Renter occupied greater than 100% of HAMFI not computed (no/negative income) All
|
||||
# Subtotal
|
||||
# Renter occupied greater than 80% but less than or equal to 100% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
"T8_est131",
|
||||
# Subtotal
|
||||
# Renter occupied
|
||||
# greater than 100% of HAMFI
|
||||
# not computed (no/negative income)
|
||||
# All
|
||||
]
|
||||
|
||||
# T8_est68 Subtotal Renter occupied All All All
|
||||
|
@ -165,14 +274,12 @@ class HudHousingETL(ExtractTransformLoad):
|
|||
# TODO: add small sample size checks
|
||||
self.df[self.HOUSING_BURDEN_FIELD_NAME] = self.df[
|
||||
self.HOUSING_BURDEN_NUMERATOR_FIELD_NAME
|
||||
].astype(float) / self.df[
|
||||
self.HOUSING_BURDEN_DENOMINATOR_FIELD_NAME
|
||||
].astype(
|
||||
].astype(float) / self.df[self.HOUSING_BURDEN_DENOMINATOR_FIELD_NAME].astype(
|
||||
float
|
||||
)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving HUD Housing Data")
|
||||
logger.info("Saving HUD Housing Data")
|
||||
|
||||
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
|
|
@ -9,7 +9,8 @@ logger = get_module_logger(__name__)
|
|||
|
||||
class HudRecapETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.HUD_RECAP_CSV_URL = "https://opendata.arcgis.com/api/v3/datasets/56de4edea8264fe5a344da9811ef5d6e_0/downloads/data?format=csv&spatialRefId=4326"
|
||||
# pylint: disable=line-too-long
|
||||
self.HUD_RECAP_CSV_URL = "https://opendata.arcgis.com/api/v3/datasets/56de4edea8264fe5a344da9811ef5d6e_0/downloads/data?format=csv&spatialRefId=4326" # noqa: E501
|
||||
self.HUD_RECAP_CSV = (
|
||||
self.TMP_PATH
|
||||
/ "Racially_or_Ethnically_Concentrated_Areas_of_Poverty__R_ECAPs_.csv"
|
||||
|
@ -22,7 +23,7 @@ class HudRecapETL(ExtractTransformLoad):
|
|||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(f"Downloading HUD Recap Data")
|
||||
logger.info("Downloading HUD Recap Data")
|
||||
download = requests.get(self.HUD_RECAP_CSV_URL, verify=None)
|
||||
file_contents = download.content
|
||||
csv_file = open(self.HUD_RECAP_CSV, "wb")
|
||||
|
@ -30,7 +31,7 @@ class HudRecapETL(ExtractTransformLoad):
|
|||
csv_file.close()
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming HUD Recap Data")
|
||||
logger.info("Transforming HUD Recap Data")
|
||||
|
||||
# Load comparison index (CalEnviroScreen 4)
|
||||
self.df = pd.read_csv(self.HUD_RECAP_CSV, dtype={"GEOID": "string"})
|
||||
|
@ -57,7 +58,7 @@ class HudRecapETL(ExtractTransformLoad):
|
|||
self.df.sort_values(by=self.GEOID_TRACT_FIELD_NAME, inplace=True)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving HUD Recap CSV")
|
||||
logger.info("Saving HUD Recap CSV")
|
||||
# write nationwide csv
|
||||
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_csv(self.CSV_PATH / f"usa.csv", index=False)
|
||||
self.df.to_csv(self.CSV_PATH / "usa.csv", index=False)
|
||||
|
|
|
@ -3,25 +3,72 @@ import geopandas as gpd
|
|||
|
||||
from etl.base import ExtractTransformLoad
|
||||
from utils import get_module_logger
|
||||
import os
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class TreeEquityScoreETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.TES_URL = "https://national-tes-data-share.s3.amazonaws.com/national_tes_share/"
|
||||
self.TES_URL = (
|
||||
"https://national-tes-data-share.s3.amazonaws.com/national_tes_share/"
|
||||
)
|
||||
self.TES_CSV = self.TMP_PATH / "tes_2021_data.csv"
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "tree_equity_score"
|
||||
self.df: gpd.GeoDataFrame
|
||||
self.states = ["al", "az", "ar", "ca", "co", "ct", "de", "dc", "fl",
|
||||
"ga", "id", "il", "in", "ia", "ks", "ky", "la", "me",
|
||||
"md", "ma", "mi", "mn", "ms", "mo", "mt", "ne", "nv", "nh",
|
||||
"nj", "nm", "ny", "nc", "nd", "oh", "ok", "or", "pa",
|
||||
"ri", "sc", "sd", "tn", "tx", "ut", "vt", "va", "wa", "wv", "wi", "wy"]
|
||||
self.states = [
|
||||
"al",
|
||||
"az",
|
||||
"ar",
|
||||
"ca",
|
||||
"co",
|
||||
"ct",
|
||||
"de",
|
||||
"dc",
|
||||
"fl",
|
||||
"ga",
|
||||
"id",
|
||||
"il",
|
||||
"in",
|
||||
"ia",
|
||||
"ks",
|
||||
"ky",
|
||||
"la",
|
||||
"me",
|
||||
"md",
|
||||
"ma",
|
||||
"mi",
|
||||
"mn",
|
||||
"ms",
|
||||
"mo",
|
||||
"mt",
|
||||
"ne",
|
||||
"nv",
|
||||
"nh",
|
||||
"nj",
|
||||
"nm",
|
||||
"ny",
|
||||
"nc",
|
||||
"nd",
|
||||
"oh",
|
||||
"ok",
|
||||
"or",
|
||||
"pa",
|
||||
"ri",
|
||||
"sc",
|
||||
"sd",
|
||||
"tn",
|
||||
"tx",
|
||||
"ut",
|
||||
"vt",
|
||||
"va",
|
||||
"wa",
|
||||
"wv",
|
||||
"wi",
|
||||
"wy",
|
||||
]
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info(f"Downloading Tree Equity Score Data")
|
||||
logger.info("Downloading Tree Equity Score Data")
|
||||
for state in self.states:
|
||||
super().extract(
|
||||
f"{self.TES_URL}{state}.zip.zip",
|
||||
|
@ -29,14 +76,14 @@ class TreeEquityScoreETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info(f"Transforming Tree Equity Score Data")
|
||||
logger.info("Transforming Tree Equity Score Data")
|
||||
tes_state_dfs = []
|
||||
for state in self.states:
|
||||
tes_state_dfs.append(gpd.read_file(f"{self.TMP_PATH}/{state}/{state}.shp"))
|
||||
self.df = gpd.GeoDataFrame(pd.concat(tes_state_dfs), crs=tes_state_dfs[0].crs)
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info(f"Saving Tree Equity Score GeoJSON")
|
||||
logger.info("Saving Tree Equity Score GeoJSON")
|
||||
# write nationwide csv
|
||||
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df.to_file(self.CSV_PATH / "tes_conus.geojson", driver='GeoJSON')
|
||||
self.df.to_file(self.CSV_PATH / "tes_conus.geojson", driver="GeoJSON")
|
||||
|
|
237
data/data-pipeline/poetry.lock
generated
237
data/data-pipeline/poetry.lock
generated
|
@ -31,6 +31,20 @@ dev = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest", "sphinx", "wheel", "p
|
|||
docs = ["sphinx"]
|
||||
tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"]
|
||||
|
||||
[[package]]
|
||||
name = "astroid"
|
||||
version = "2.6.5"
|
||||
description = "An abstract syntax tree for Python with inference support."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = "~=3.6"
|
||||
|
||||
[package.dependencies]
|
||||
lazy-object-proxy = ">=1.4.0"
|
||||
typed-ast = {version = ">=1.4.0,<1.5", markers = "implementation_name == \"cpython\" and python_version < \"3.8\""}
|
||||
typing-extensions = {version = ">=3.7.4", markers = "python_version < \"3.8\""}
|
||||
wrapt = ">=1.11,<1.13"
|
||||
|
||||
[[package]]
|
||||
name = "async-generator"
|
||||
version = "1.10"
|
||||
|
@ -203,6 +217,18 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||
|
||||
[[package]]
|
||||
name = "configparser"
|
||||
version = "5.0.2"
|
||||
description = "Updated configparser from Python 3.8 for Python 2.6+."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
|
||||
[package.extras]
|
||||
docs = ["sphinx", "jaraco.packaging (>=8.2)", "rst.linker (>=1.9)"]
|
||||
testing = ["pytest (>=4.6)", "pytest-checkdocs (>=1.2.3)", "pytest-flake8", "pytest-cov", "pytest-enabler", "pytest-black (>=0.3.7)", "pytest-mypy"]
|
||||
|
||||
[[package]]
|
||||
name = "debugpy"
|
||||
version = "1.4.0"
|
||||
|
@ -235,6 +261,22 @@ category = "dev"
|
|||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[[package]]
|
||||
name = "dparse"
|
||||
version = "0.5.1"
|
||||
description = "A parser for Python dependency files"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
|
||||
[package.dependencies]
|
||||
packaging = "*"
|
||||
pyyaml = "*"
|
||||
toml = "*"
|
||||
|
||||
[package.extras]
|
||||
pipenv = ["pipenv"]
|
||||
|
||||
[[package]]
|
||||
name = "dynaconf"
|
||||
version = "3.1.4"
|
||||
|
@ -291,6 +333,20 @@ calc = ["shapely"]
|
|||
s3 = ["boto3 (>=1.2.4)"]
|
||||
test = ["pytest (>=3)", "pytest-cov", "boto3 (>=1.2.4)", "mock"]
|
||||
|
||||
[[package]]
|
||||
name = "flake8"
|
||||
version = "3.9.2"
|
||||
description = "the modular source code checker: pep8 pyflakes and co"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
|
||||
|
||||
[package.dependencies]
|
||||
importlib-metadata = {version = "*", markers = "python_version < \"3.8\""}
|
||||
mccabe = ">=0.6.0,<0.7.0"
|
||||
pycodestyle = ">=2.7.0,<2.8.0"
|
||||
pyflakes = ">=2.3.0,<2.4.0"
|
||||
|
||||
[[package]]
|
||||
name = "geopandas"
|
||||
version = "0.9.0"
|
||||
|
@ -409,6 +465,20 @@ widgetsnbextension = ">=3.5.0,<3.6.0"
|
|||
[package.extras]
|
||||
test = ["pytest (>=3.6.0)", "pytest-cov", "mock"]
|
||||
|
||||
[[package]]
|
||||
name = "isort"
|
||||
version = "5.9.3"
|
||||
description = "A Python utility / library to sort Python imports."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.6.1,<4.0"
|
||||
|
||||
[package.extras]
|
||||
pipfile_deprecated_finder = ["pipreqs", "requirementslib"]
|
||||
requirements_deprecated_finder = ["pipreqs", "pip-api"]
|
||||
colors = ["colorama (>=0.4.3,<0.5.0)"]
|
||||
plugins = ["setuptools"]
|
||||
|
||||
[[package]]
|
||||
name = "jedi"
|
||||
version = "0.18.0"
|
||||
|
@ -625,6 +695,27 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
|
||||
[[package]]
|
||||
name = "lazy-object-proxy"
|
||||
version = "1.6.0"
|
||||
description = "A fast and thorough lazy object proxy."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
|
||||
|
||||
[[package]]
|
||||
name = "liccheck"
|
||||
version = "0.6.2"
|
||||
description = "Check python packages from requirement.txt and report issues"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=2.7"
|
||||
|
||||
[package.dependencies]
|
||||
configparser = {version = "*", markers = "python_version >= \"3.4\""}
|
||||
semantic-version = ">=2.7.0"
|
||||
toml = "*"
|
||||
|
||||
[[package]]
|
||||
name = "lxml"
|
||||
version = "4.6.3"
|
||||
|
@ -658,6 +749,14 @@ python-versions = ">=3.5"
|
|||
[package.dependencies]
|
||||
traitlets = "*"
|
||||
|
||||
[[package]]
|
||||
name = "mccabe"
|
||||
version = "0.6.1"
|
||||
description = "McCabe checker, plugin for flake8"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[[package]]
|
||||
name = "mistune"
|
||||
version = "0.8.4"
|
||||
|
@ -954,6 +1053,14 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
|
||||
[[package]]
|
||||
name = "pycodestyle"
|
||||
version = "2.7.0"
|
||||
description = "Python style guide checker"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
|
||||
[[package]]
|
||||
name = "pycparser"
|
||||
version = "2.20"
|
||||
|
@ -962,6 +1069,14 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
|
||||
[[package]]
|
||||
name = "pyflakes"
|
||||
version = "2.3.1"
|
||||
description = "passive checker of Python programs"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
|
||||
[[package]]
|
||||
name = "pygments"
|
||||
version = "2.9.0"
|
||||
|
@ -970,6 +1085,21 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
|
||||
[[package]]
|
||||
name = "pylint"
|
||||
version = "2.9.6"
|
||||
description = "python code static checker"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = "~=3.6"
|
||||
|
||||
[package.dependencies]
|
||||
astroid = ">=2.6.5,<2.7"
|
||||
colorama = {version = "*", markers = "sys_platform == \"win32\""}
|
||||
isort = ">=4.2.5,<6"
|
||||
mccabe = ">=0.6,<0.7"
|
||||
toml = ">=0.7.1"
|
||||
|
||||
[[package]]
|
||||
name = "pyparsing"
|
||||
version = "2.4.7"
|
||||
|
@ -1108,6 +1238,28 @@ urllib3 = ">=1.21.1,<1.27"
|
|||
socks = ["PySocks (>=1.5.6,!=1.5.7)", "win-inet-pton"]
|
||||
use_chardet_on_py3 = ["chardet (>=3.0.2,<5)"]
|
||||
|
||||
[[package]]
|
||||
name = "safety"
|
||||
version = "1.10.3"
|
||||
description = "Checks installed dependencies for known vulnerabilities."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
|
||||
[package.dependencies]
|
||||
Click = ">=6.0"
|
||||
dparse = ">=0.5.1"
|
||||
packaging = "*"
|
||||
requests = "*"
|
||||
|
||||
[[package]]
|
||||
name = "semantic-version"
|
||||
version = "2.8.5"
|
||||
description = "A library implementing the 'SemVer' scheme."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
|
||||
[[package]]
|
||||
name = "send2trash"
|
||||
version = "1.7.1"
|
||||
|
@ -1312,6 +1464,14 @@ python-versions = "*"
|
|||
[package.dependencies]
|
||||
notebook = ">=4.4.1"
|
||||
|
||||
[[package]]
|
||||
name = "wrapt"
|
||||
version = "1.12.1"
|
||||
description = "Module for decorators, wrappers and monkey patching."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[[package]]
|
||||
name = "zipp"
|
||||
version = "3.5.0"
|
||||
|
@ -1327,7 +1487,7 @@ testing = ["pytest (>=4.6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytes
|
|||
[metadata]
|
||||
lock-version = "1.1"
|
||||
python-versions = "^3.7.1"
|
||||
content-hash = "e6692af9b40f2508a858739de08cb9c1a2e86b54a219b8196ca736981a61ce4d"
|
||||
content-hash = "705b0cf25d9ecd3028ba5b71581b5139608cb3b0b4d13c4817b4f3a49643308c"
|
||||
|
||||
[metadata.files]
|
||||
appdirs = [
|
||||
|
@ -1362,6 +1522,10 @@ argon2-cffi = [
|
|||
{file = "argon2_cffi-20.1.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:3aa804c0e52f208973845e8b10c70d8957c9e5a666f702793256242e9167c4e0"},
|
||||
{file = "argon2_cffi-20.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:36320372133a003374ef4275fbfce78b7ab581440dfca9f9471be3dd9a522428"},
|
||||
]
|
||||
astroid = [
|
||||
{file = "astroid-2.6.5-py3-none-any.whl", hash = "sha256:7b963d1c590d490f60d2973e57437115978d3a2529843f160b5003b721e1e925"},
|
||||
{file = "astroid-2.6.5.tar.gz", hash = "sha256:83e494b02d75d07d4e347b27c066fd791c0c74fc96c613d1ea3de0c82c48168f"},
|
||||
]
|
||||
async-generator = [
|
||||
{file = "async_generator-1.10-py3-none-any.whl", hash = "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b"},
|
||||
{file = "async_generator-1.10.tar.gz", hash = "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144"},
|
||||
|
@ -1460,6 +1624,10 @@ colorama = [
|
|||
{file = "colorama-0.4.4-py2.py3-none-any.whl", hash = "sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2"},
|
||||
{file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"},
|
||||
]
|
||||
configparser = [
|
||||
{file = "configparser-5.0.2-py3-none-any.whl", hash = "sha256:af59f2cdd7efbdd5d111c1976ecd0b82db9066653362f0962d7bf1d3ab89a1fa"},
|
||||
{file = "configparser-5.0.2.tar.gz", hash = "sha256:85d5de102cfe6d14a5172676f09d19c465ce63d6019cf0a4ef13385fc535e828"},
|
||||
]
|
||||
debugpy = [
|
||||
{file = "debugpy-1.4.0-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:55d12ee03b3b705af5250b8344a87fbd9bb720d00bd9d281d2998dbf9f60c8d3"},
|
||||
{file = "debugpy-1.4.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:712ef6a4be1ee4b9a954c6f36788ac12686dc1d5eeef501e0b81e1c89c16484d"},
|
||||
|
@ -1530,6 +1698,10 @@ distlib = [
|
|||
{file = "distlib-0.3.2-py2.py3-none-any.whl", hash = "sha256:23e223426b28491b1ced97dc3bbe183027419dfc7982b4fa2f05d5f3ff10711c"},
|
||||
{file = "distlib-0.3.2.zip", hash = "sha256:106fef6dc37dd8c0e2c0a60d3fca3e77460a48907f335fa28420463a6f799736"},
|
||||
]
|
||||
dparse = [
|
||||
{file = "dparse-0.5.1-py3-none-any.whl", hash = "sha256:e953a25e44ebb60a5c6efc2add4420c177f1d8404509da88da9729202f306994"},
|
||||
{file = "dparse-0.5.1.tar.gz", hash = "sha256:a1b5f169102e1c894f9a7d5ccf6f9402a836a5d24be80a986c7ce9eaed78f367"},
|
||||
]
|
||||
dynaconf = [
|
||||
{file = "dynaconf-3.1.4-py2.py3-none-any.whl", hash = "sha256:e6f383b84150b70fc439c8b2757581a38a58d07962aa14517292dcce1a77e160"},
|
||||
{file = "dynaconf-3.1.4.tar.gz", hash = "sha256:b2f472d83052f809c5925565b8a2ba76a103d5dc1dbb9748b693ed67212781b9"},
|
||||
|
@ -1553,6 +1725,10 @@ fiona = [
|
|||
{file = "Fiona-1.8.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:e72e4a5b84ec410be531d4fe4c1a5c87c6c0e92d01116c145c0f1b33f81c8080"},
|
||||
{file = "Fiona-1.8.20.tar.gz", hash = "sha256:a70502d2857b82f749c09cb0dea3726787747933a2a1599b5ab787d74e3c143b"},
|
||||
]
|
||||
flake8 = [
|
||||
{file = "flake8-3.9.2-py2.py3-none-any.whl", hash = "sha256:bf8fd333346d844f616e8d47905ef3a3384edae6b4e9beb0c5101e25e3110907"},
|
||||
{file = "flake8-3.9.2.tar.gz", hash = "sha256:07528381786f2a6237b061f6e96610a4167b226cb926e2aa2b6b1d78057c576b"},
|
||||
]
|
||||
geopandas = [
|
||||
{file = "geopandas-0.9.0-py2.py3-none-any.whl", hash = "sha256:79f6e557ba0dba76eec44f8351b1c6b42a17c38f5f08fef347e98fe4dae563c7"},
|
||||
{file = "geopandas-0.9.0.tar.gz", hash = "sha256:63972ab4dc44c4029f340600dcb83264eb8132dd22b104da0b654bef7f42630a"},
|
||||
|
@ -1581,6 +1757,10 @@ ipywidgets = [
|
|||
{file = "ipywidgets-7.6.3-py2.py3-none-any.whl", hash = "sha256:e6513cfdaf5878de30f32d57f6dc2474da395a2a2991b94d487406c0ab7f55ca"},
|
||||
{file = "ipywidgets-7.6.3.tar.gz", hash = "sha256:9f1a43e620530f9e570e4a493677d25f08310118d315b00e25a18f12913c41f0"},
|
||||
]
|
||||
isort = [
|
||||
{file = "isort-5.9.3-py3-none-any.whl", hash = "sha256:e17d6e2b81095c9db0a03a8025a957f334d6ea30b26f9ec70805411e5c7c81f2"},
|
||||
{file = "isort-5.9.3.tar.gz", hash = "sha256:9c2ea1e62d871267b78307fe511c0838ba0da28698c5732d54e2790bf3ba9899"},
|
||||
]
|
||||
jedi = [
|
||||
{file = "jedi-0.18.0-py2.py3-none-any.whl", hash = "sha256:18456d83f65f400ab0c2d3319e48520420ef43b23a086fdc05dff34132f0fb93"},
|
||||
{file = "jedi-0.18.0.tar.gz", hash = "sha256:92550a404bad8afed881a137ec9a461fed49eca661414be45059329614ed0707"},
|
||||
|
@ -1636,6 +1816,34 @@ jupyterlab-widgets = [
|
|||
{file = "jupyterlab_widgets-1.0.0-py3-none-any.whl", hash = "sha256:caeaf3e6103180e654e7d8d2b81b7d645e59e432487c1d35a41d6d3ee56b3fef"},
|
||||
{file = "jupyterlab_widgets-1.0.0.tar.gz", hash = "sha256:5c1a29a84d3069208cb506b10609175b249b6486d6b1cbae8fcde2a11584fb78"},
|
||||
]
|
||||
lazy-object-proxy = [
|
||||
{file = "lazy-object-proxy-1.6.0.tar.gz", hash = "sha256:489000d368377571c6f982fba6497f2aa13c6d1facc40660963da62f5c379726"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:c6938967f8528b3668622a9ed3b31d145fab161a32f5891ea7b84f6b790be05b"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp27-cp27m-win32.whl", hash = "sha256:ebfd274dcd5133e0afae738e6d9da4323c3eb021b3e13052d8cbd0e457b1256e"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp27-cp27m-win_amd64.whl", hash = "sha256:ed361bb83436f117f9917d282a456f9e5009ea12fd6de8742d1a4752c3017e93"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:d900d949b707778696fdf01036f58c9876a0d8bfe116e8d220cfd4b15f14e741"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:5743a5ab42ae40caa8421b320ebf3a998f89c85cdc8376d6b2e00bd12bd1b587"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:bf34e368e8dd976423396555078def5cfc3039ebc6fc06d1ae2c5a65eebbcde4"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp36-cp36m-win32.whl", hash = "sha256:b579f8acbf2bdd9ea200b1d5dea36abd93cabf56cf626ab9c744a432e15c815f"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:4f60460e9f1eb632584c9685bccea152f4ac2130e299784dbaf9fae9f49891b3"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d7124f52f3bd259f510651450e18e0fd081ed82f3c08541dffc7b94b883aa981"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:22ddd618cefe54305df49e4c069fa65715be4ad0e78e8d252a33debf00f6ede2"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp37-cp37m-win32.whl", hash = "sha256:9d397bf41caad3f489e10774667310d73cb9c4258e9aed94b9ec734b34b495fd"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:24a5045889cc2729033b3e604d496c2b6f588c754f7a62027ad4437a7ecc4837"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:17e0967ba374fc24141738c69736da90e94419338fd4c7c7bef01ee26b339653"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:410283732af311b51b837894fa2f24f2c0039aa7f220135192b38fcc42bd43d3"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp38-cp38-win32.whl", hash = "sha256:85fb7608121fd5621cc4377a8961d0b32ccf84a7285b4f1d21988b2eae2868e8"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:d1c2676e3d840852a2de7c7d5d76407c772927addff8d742b9808fe0afccebdf"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:b865b01a2e7f96db0c5d12cfea590f98d8c5ba64ad222300d93ce6ff9138bcad"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:4732c765372bd78a2d6b2150a6e99d00a78ec963375f236979c0626b97ed8e43"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:9698110e36e2df951c7c36b6729e96429c9c32b3331989ef19976592c5f3c77a"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp39-cp39-win32.whl", hash = "sha256:1fee665d2638491f4d6e55bd483e15ef21f6c8c2095f235fef72601021e64f61"},
|
||||
{file = "lazy_object_proxy-1.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:f5144c75445ae3ca2057faac03fda5a902eff196702b0a24daf1d6ce0650514b"},
|
||||
]
|
||||
liccheck = [
|
||||
{file = "liccheck-0.6.2-py2.py3-none-any.whl", hash = "sha256:e6583fc327126695a31a7ed8941e784ecd5c84bb2aecbe2782d925cac5c3fe47"},
|
||||
{file = "liccheck-0.6.2.tar.gz", hash = "sha256:5667be7c9ef6496bd381e709e938e9fe51c31d601afc44965615cdfbce375eab"},
|
||||
]
|
||||
lxml = [
|
||||
{file = "lxml-4.6.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:df7c53783a46febb0e70f6b05df2ba104610f2fb0d27023409734a3ecbb78fb2"},
|
||||
{file = "lxml-4.6.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1b7584d421d254ab86d4f0b13ec662a9014397678a7c4265a02a6d7c2b18a75f"},
|
||||
|
@ -1724,6 +1932,10 @@ matplotlib-inline = [
|
|||
{file = "matplotlib-inline-0.1.2.tar.gz", hash = "sha256:f41d5ff73c9f5385775d5c0bc13b424535c8402fe70ea8210f93e11f3683993e"},
|
||||
{file = "matplotlib_inline-0.1.2-py3-none-any.whl", hash = "sha256:5cf1176f554abb4fa98cb362aa2b55c500147e4bdbb07e3fda359143e1da0811"},
|
||||
]
|
||||
mccabe = [
|
||||
{file = "mccabe-0.6.1-py2.py3-none-any.whl", hash = "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42"},
|
||||
{file = "mccabe-0.6.1.tar.gz", hash = "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f"},
|
||||
]
|
||||
mistune = [
|
||||
{file = "mistune-0.8.4-py2.py3-none-any.whl", hash = "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"},
|
||||
{file = "mistune-0.8.4.tar.gz", hash = "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e"},
|
||||
|
@ -1879,14 +2091,26 @@ py = [
|
|||
{file = "py-1.10.0-py2.py3-none-any.whl", hash = "sha256:3b80836aa6d1feeaa108e046da6423ab8f6ceda6468545ae8d02d9d58d18818a"},
|
||||
{file = "py-1.10.0.tar.gz", hash = "sha256:21b81bda15b66ef5e1a777a21c4dcd9c20ad3efd0b3f817e7a809035269e1bd3"},
|
||||
]
|
||||
pycodestyle = [
|
||||
{file = "pycodestyle-2.7.0-py2.py3-none-any.whl", hash = "sha256:514f76d918fcc0b55c6680472f0a37970994e07bbb80725808c17089be302068"},
|
||||
{file = "pycodestyle-2.7.0.tar.gz", hash = "sha256:c389c1d06bf7904078ca03399a4816f974a1d590090fecea0c63ec26ebaf1cef"},
|
||||
]
|
||||
pycparser = [
|
||||
{file = "pycparser-2.20-py2.py3-none-any.whl", hash = "sha256:7582ad22678f0fcd81102833f60ef8d0e57288b6b5fb00323d101be910e35705"},
|
||||
{file = "pycparser-2.20.tar.gz", hash = "sha256:2d475327684562c3a96cc71adf7dc8c4f0565175cf86b6d7a404ff4c771f15f0"},
|
||||
]
|
||||
pyflakes = [
|
||||
{file = "pyflakes-2.3.1-py2.py3-none-any.whl", hash = "sha256:7893783d01b8a89811dd72d7dfd4d84ff098e5eed95cfa8905b22bbffe52efc3"},
|
||||
{file = "pyflakes-2.3.1.tar.gz", hash = "sha256:f5bc8ecabc05bb9d291eb5203d6810b49040f6ff446a756326104746cc00c1db"},
|
||||
]
|
||||
pygments = [
|
||||
{file = "Pygments-2.9.0-py3-none-any.whl", hash = "sha256:d66e804411278594d764fc69ec36ec13d9ae9147193a1740cd34d272ca383b8e"},
|
||||
{file = "Pygments-2.9.0.tar.gz", hash = "sha256:a18f47b506a429f6f4b9df81bb02beab9ca21d0a5fee38ed15aef65f0545519f"},
|
||||
]
|
||||
pylint = [
|
||||
{file = "pylint-2.9.6-py3-none-any.whl", hash = "sha256:2e1a0eb2e8ab41d6b5dbada87f066492bb1557b12b76c47c2ee8aa8a11186594"},
|
||||
{file = "pylint-2.9.6.tar.gz", hash = "sha256:8b838c8983ee1904b2de66cce9d0b96649a91901350e956d78f289c3bc87b48e"},
|
||||
]
|
||||
pyparsing = [
|
||||
{file = "pyparsing-2.4.7-py2.py3-none-any.whl", hash = "sha256:ef9d7589ef3c200abe66653d3f1ab1033c3c419ae9b9bdb1240a85b024efc88b"},
|
||||
{file = "pyparsing-2.4.7.tar.gz", hash = "sha256:c203ec8783bf771a155b207279b9bccb8dea02d8f0c9e5f8ead507bc3246ecc1"},
|
||||
|
@ -2082,6 +2306,14 @@ requests = [
|
|||
{file = "requests-2.26.0-py2.py3-none-any.whl", hash = "sha256:6c1246513ecd5ecd4528a0906f910e8f0f9c6b8ec72030dc9fd154dc1a6efd24"},
|
||||
{file = "requests-2.26.0.tar.gz", hash = "sha256:b8aa58f8cf793ffd8782d3d8cb19e66ef36f7aba4353eec859e74678b01b07a7"},
|
||||
]
|
||||
safety = [
|
||||
{file = "safety-1.10.3-py2.py3-none-any.whl", hash = "sha256:5f802ad5df5614f9622d8d71fedec2757099705c2356f862847c58c6dfe13e84"},
|
||||
{file = "safety-1.10.3.tar.gz", hash = "sha256:30e394d02a20ac49b7f65292d19d38fa927a8f9582cdfd3ad1adbbc66c641ad5"},
|
||||
]
|
||||
semantic-version = [
|
||||
{file = "semantic_version-2.8.5-py2.py3-none-any.whl", hash = "sha256:45e4b32ee9d6d70ba5f440ec8cc5221074c7f4b0e8918bdab748cc37912440a9"},
|
||||
{file = "semantic_version-2.8.5.tar.gz", hash = "sha256:d2cb2de0558762934679b9a104e82eca7af448c9f4974d1f3eeccff651df8a54"},
|
||||
]
|
||||
send2trash = [
|
||||
{file = "Send2Trash-1.7.1-py3-none-any.whl", hash = "sha256:c20fee8c09378231b3907df9c215ec9766a84ee20053d99fbad854fe8bd42159"},
|
||||
{file = "Send2Trash-1.7.1.tar.gz", hash = "sha256:17730aa0a33ab82ed6ca76be3bb25f0433d0014f1ccf63c979bab13a5b9db2b2"},
|
||||
|
@ -2243,6 +2475,9 @@ widgetsnbextension = [
|
|||
{file = "widgetsnbextension-3.5.1-py2.py3-none-any.whl", hash = "sha256:bd314f8ceb488571a5ffea6cc5b9fc6cba0adaf88a9d2386b93a489751938bcd"},
|
||||
{file = "widgetsnbextension-3.5.1.tar.gz", hash = "sha256:079f87d87270bce047512400efd70238820751a11d2d8cb137a5a5bdbaf255c7"},
|
||||
]
|
||||
wrapt = [
|
||||
{file = "wrapt-1.12.1.tar.gz", hash = "sha256:b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7"},
|
||||
]
|
||||
zipp = [
|
||||
{file = "zipp-3.5.0-py3-none-any.whl", hash = "sha256:957cfda87797e389580cb8b9e3870841ca991e2125350677b2ca83a0e99390a3"},
|
||||
{file = "zipp-3.5.0.tar.gz", hash = "sha256:f5812b1e007e48cff63449a5e9f4e7ebea716b4111f9c4f9a645f91d579bf0c4"},
|
||||
|
|
|
@ -25,7 +25,79 @@ types-requests = "^2.25.0"
|
|||
black = {version = "^21.6b0", allow-prereleases = true}
|
||||
mypy = "^0.910"
|
||||
tox = "^3.24.0"
|
||||
flake8 = "^3.9.2"
|
||||
pylint = "^2.9.6"
|
||||
liccheck = "^0.6.2"
|
||||
safety = "^1.10.3"
|
||||
|
||||
[build-system]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
|
||||
[tool.pylint]
|
||||
|
||||
[tool.pylint."MESSAGE CONTROL"]
|
||||
disable = [
|
||||
"C0114", # Disables module docstrings
|
||||
"R0201", # Disables method could have been a function
|
||||
"R0903", # Disables too few public methods
|
||||
"C0103", # Disables name case styling
|
||||
"W0511", # Disables FIXME warning
|
||||
"W1203", # Disables f-string interpolation for logging warning
|
||||
# Errors temporarily ignored for further discussion
|
||||
"W0107", # Disables unnecessary pass
|
||||
"W0221", # Disables arguments differ
|
||||
"R0902", # Disables too many instance attributes
|
||||
"R0914", # Disables too many local variables
|
||||
"W0621", # Disables redefined outer name
|
||||
"C0302", # Disables too many lines in module
|
||||
"R1732", # Disables consider using "with"
|
||||
"R1720", # Disables unnecessary "else" after "raise"
|
||||
"C0206", # Disables consider iteratig with ".items()"
|
||||
"C0200", # Disables consider using "enumerate" instead of "range" + "len"
|
||||
"W0612", # Disables unused variable
|
||||
"W0613", # Disables unused argument
|
||||
"C0116", # Disables missing function or method docstring
|
||||
"C0115", # Disables missing class docstring
|
||||
]
|
||||
|
||||
[tool.pylint.FORMAT]
|
||||
max-line-length=150
|
||||
|
||||
[tool.pylint.SIMILARITIES]
|
||||
# Configures how pylint detects repetitive code
|
||||
min-similarity-lines = 4
|
||||
ignore-comments = "yes"
|
||||
ignore-docstrings = "yes"
|
||||
ignore-imports = "yes"
|
||||
|
||||
[tool.liccheck]
|
||||
# Authorized and unauthorized licenses in LOWER CASE
|
||||
authorized_licenses = [
|
||||
"bsd",
|
||||
"new bsd",
|
||||
"bsd license",
|
||||
"bsd 3-clause",
|
||||
"new bsd license",
|
||||
"simplified bsd",
|
||||
"apache",
|
||||
"apache 2.0",
|
||||
"apache license 2.0",
|
||||
"apache software license",
|
||||
"apache software",
|
||||
"gnu lgpl",
|
||||
"gnu lesser general public license v2 (lgplv2)",
|
||||
"gnu general public license v2 (gplv2)",
|
||||
"gnu library or lesser general public license (lgpl)",
|
||||
"lgpl with exceptions or zpl",
|
||||
"isc license",
|
||||
"isc license (iscl)",
|
||||
"mit",
|
||||
"mit license",
|
||||
"mozilla public license 2.0 (mpl 2.0)",
|
||||
"public domain",
|
||||
"python software foundation license",
|
||||
"python software foundation",
|
||||
"zpl 2.1",
|
||||
"gpl v3"
|
||||
]
|
||||
|
|
|
@ -1,30 +1,40 @@
|
|||
appnope==0.1.2; sys_platform == "darwin" and python_version >= "3.7"
|
||||
appdirs==1.4.4; python_full_version >= "3.6.2"
|
||||
appnope==0.1.2; sys_platform == "darwin" and python_version >= "3.7" and platform_system == "Darwin"
|
||||
argon2-cffi==20.1.0; python_version >= "3.6"
|
||||
astroid==2.6.5; python_version >= "3.6" and python_version < "4.0"
|
||||
async-generator==1.10; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
attrs==21.2.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
|
||||
backcall==0.2.0; python_version >= "3.7"
|
||||
bleach==3.3.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
backports.entry-points-selectable==1.1.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "2.7"
|
||||
black==21.7b0; python_full_version >= "3.6.2"
|
||||
bleach==3.3.1; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
censusdata==1.13; python_version >= "2.7"
|
||||
certifi==2021.5.30; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
certifi==2021.5.30; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7"
|
||||
cffi==1.14.6; implementation_name == "pypy" and python_version >= "3.6"
|
||||
chardet==4.0.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "2.7"
|
||||
charset-normalizer==2.0.3; python_full_version >= "3.6.0" and python_version >= "3"
|
||||
click-plugins==1.1.1; python_version >= "3.6"
|
||||
click==8.0.1; python_version >= "3.6"
|
||||
cligj==0.7.2; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version < "4" and python_version >= "3.6"
|
||||
colorama==0.4.4; python_version >= "3.7" and python_full_version < "3.0.0" and platform_system == "Windows" and sys_platform == "win32" or platform_system == "Windows" and python_version >= "3.7" and python_full_version >= "3.5.0" and sys_platform == "win32"
|
||||
debugpy==1.3.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
colorama==0.4.4; platform_system == "Windows" and python_version >= "3.7" and python_full_version >= "3.6.2" and sys_platform == "win32" and python_version < "4.0" and (python_version >= "3.7" and python_full_version < "3.0.0" and sys_platform == "win32" or sys_platform == "win32" and python_version >= "3.7" and python_full_version >= "3.5.0")
|
||||
configparser==5.0.2; python_version >= "3.6"
|
||||
debugpy==1.4.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
decorator==5.0.9; python_version >= "3.7"
|
||||
defusedxml==0.7.1; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
distlib==0.3.2; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
dparse==0.5.1; python_version >= "3.5"
|
||||
dynaconf==3.1.4
|
||||
entrypoints==0.3; python_version >= "3.7"
|
||||
filelock==3.0.12; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
fiona==1.8.20; python_version >= "3.6"
|
||||
flake8==3.9.2; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
|
||||
geopandas==0.9.0; python_version >= "3.6"
|
||||
idna==2.10; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "2.7"
|
||||
importlib-metadata==3.10.1; python_version < "3.8" and python_version >= "3.7"
|
||||
ipykernel==6.0.1; python_version >= "3.7"
|
||||
idna==3.2; python_version >= "3.5" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.5"
|
||||
importlib-metadata==3.10.1; python_version < "3.8" and python_version >= "3.7" and (python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "3.8" or python_full_version >= "3.5.0" and python_version < "3.8" and python_version >= "3.6") and python_full_version >= "3.6.2"
|
||||
ipykernel==6.0.3; python_version >= "3.7"
|
||||
ipython-genutils==0.2.0; python_version >= "3.7"
|
||||
ipython==7.25.0; python_version >= "3.7"
|
||||
ipywidgets==7.6.3
|
||||
isort==5.9.3; python_full_version >= "3.6.1" and python_version < "4.0" and python_version >= "3.6"
|
||||
jedi==0.18.0; python_version >= "3.7"
|
||||
jinja2==3.0.1; python_version >= "3.7"
|
||||
jsonschema==3.2.0; python_version >= "3.5"
|
||||
|
@ -39,52 +49,72 @@ jupyter-nbextensions-configurator==0.4.1
|
|||
jupyter==1.0.0
|
||||
jupyterlab-pygments==0.1.2; python_version >= "3.7"
|
||||
jupyterlab-widgets==1.0.0; python_version >= "3.6"
|
||||
lazy-object-proxy==1.6.0; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "4.0" or python_version >= "3.6" and python_version < "4.0" and python_full_version >= "3.6.0"
|
||||
liccheck==0.6.2; python_version >= "2.7"
|
||||
lxml==4.6.3; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
markupsafe==2.0.1; python_version >= "3.7"
|
||||
matplotlib-inline==0.1.2; platform_system == "Darwin" and python_version >= "3.7"
|
||||
matplotlib-inline==0.1.2; python_version >= "3.7"
|
||||
mccabe==0.6.1; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "4.0" or python_version >= "3.6" and python_version < "4.0" and python_full_version >= "3.5.0"
|
||||
mistune==0.8.4; python_version >= "3.7"
|
||||
munch==2.5.0; python_version >= "3.6"
|
||||
mypy-extensions==0.4.3; python_full_version >= "3.6.2" and python_version >= "3.5"
|
||||
mypy==0.910; python_version >= "3.5"
|
||||
nbclient==0.5.3; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
nbconvert==6.1.0; python_version >= "3.7"
|
||||
nbformat==5.1.3; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
nest-asyncio==1.5.1; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
notebook==6.4.0; python_version >= "3.6"
|
||||
numpy==1.21.0; python_version >= "3.7"
|
||||
numpy==1.21.1; python_version >= "3.7"
|
||||
packaging==21.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
pandas==1.3.0; python_full_version >= "3.7.1"
|
||||
pandocfilters==1.4.3; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7"
|
||||
parso==0.8.2; python_version >= "3.7"
|
||||
pathspec==0.9.0; python_full_version >= "3.6.2"
|
||||
pexpect==4.8.0; sys_platform != "win32" and python_version >= "3.7"
|
||||
pickleshare==0.7.5; python_version >= "3.7"
|
||||
platformdirs==2.0.2; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
pluggy==0.13.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
prometheus-client==0.11.0; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
|
||||
prompt-toolkit==3.0.19; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
ptyprocess==0.7.0; sys_platform != "win32" and python_version >= "3.7" and os_name != "nt"
|
||||
py==1.10.0; python_version >= "3.6" and python_full_version < "3.0.0" and implementation_name == "pypy" or implementation_name == "pypy" and python_version >= "3.6" and python_full_version >= "3.4.0"
|
||||
py==1.10.0; python_version >= "3.6" and python_full_version < "3.0.0" and implementation_name == "pypy" or implementation_name == "pypy" and python_version >= "3.6" and python_full_version >= "3.5.0"
|
||||
pycodestyle==2.7.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
pycparser==2.20; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6"
|
||||
pyflakes==2.3.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
pygments==2.9.0; python_version >= "3.7"
|
||||
pyparsing==2.4.7; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
pylint==2.9.6; python_version >= "3.6" and python_version < "4.0"
|
||||
pyparsing==2.4.7; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.6"
|
||||
pyproj==3.1.0; python_version >= "3.7"
|
||||
pyrsistent==0.18.0; python_version >= "3.6"
|
||||
python-dateutil==2.8.1; python_full_version >= "3.7.1" and python_version >= "3.7"
|
||||
python-dateutil==2.8.2; python_full_version >= "3.7.1" and python_version >= "3.7"
|
||||
pytz==2021.1; python_full_version >= "3.7.1" and python_version >= "2.7"
|
||||
pywin32==301; sys_platform == "win32" and python_version >= "3.6"
|
||||
pywinpty==1.1.3; os_name == "nt" and python_version >= "3.6"
|
||||
pyyaml==5.4.1; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0"
|
||||
pyyaml==5.4.1; python_version >= "3.5" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.5"
|
||||
pyzmq==22.1.0; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
qtconsole==5.1.1; python_version >= "3.6"
|
||||
qtpy==1.9.0; python_version >= "3.6"
|
||||
requests==2.25.1; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
|
||||
regex==2021.7.6; python_full_version >= "3.6.2"
|
||||
requests==2.26.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.6.0")
|
||||
safety==1.10.3; python_version >= "3.5"
|
||||
semantic-version==2.8.5; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "2.7"
|
||||
send2trash==1.7.1; python_version >= "3.6"
|
||||
shapely==1.7.1; python_version >= "3.6"
|
||||
six==1.16.0; python_full_version >= "3.7.1" and python_version >= "2.7" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version >= "3.6") and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7") and (python_version >= "3.5" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version >= "3.5")
|
||||
six==1.16.0; python_full_version >= "3.7.1" and python_version >= "3.6" and (python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0") and (python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version >= "3.6") and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7") and (python_version >= "3.5" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version >= "3.5")
|
||||
terminado==0.10.1; python_version >= "3.6"
|
||||
testpath==0.5.0; python_version >= "3.7"
|
||||
toml==0.10.2; python_version >= "3.6" and python_full_version < "3.0.0" and python_version < "4.0" or python_full_version >= "3.5.0" and python_version >= "3.6" and python_version < "4.0"
|
||||
tomli==1.1.0; python_version >= "3.6" and python_full_version >= "3.6.2"
|
||||
tornado==6.1; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
tox==3.24.0; (python_version >= "2.7" and python_full_version < "3.0.0") or (python_full_version >= "3.5.0")
|
||||
traitlets==5.0.5; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
typed-ast==1.4.3; python_version < "3.8" and python_full_version >= "3.6.2" and python_version >= "3.6" and implementation_name == "cpython"
|
||||
types-requests==2.25.0
|
||||
typing-extensions==3.10.0.0; python_version < "3.8" and python_version >= "3.6"
|
||||
urllib3==1.26.6; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version < "4" and python_version >= "2.7"
|
||||
typing-extensions==3.10.0.0; python_version < "3.8" and python_full_version >= "3.6.2" and python_version >= "3.6"
|
||||
urllib3==1.26.6; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version < "4" and python_version >= "2.7"
|
||||
virtualenv==20.6.0; python_version >= "2.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0"
|
||||
wcwidth==0.2.5; python_full_version >= "3.6.1" and python_version >= "3.7"
|
||||
webencodings==0.5.1; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
|
||||
widgetsnbextension==3.5.1
|
||||
wrapt==1.12.1; python_version >= "3.6" and python_version < "4.0"
|
||||
zipp==3.5.0; python_version < "3.8" and python_version >= "3.6"
|
||||
|
|
|
@ -1,6 +1,20 @@
|
|||
[tox]
|
||||
# required because we use pyproject.toml
|
||||
isolated_build = true
|
||||
envlist = py37, py38, py39
|
||||
envlist = py37, py38, py39, lint, checkdeps
|
||||
# only checks python versions installed locally
|
||||
skip_missing_interpreters = true
|
||||
|
||||
[testenv:lint]
|
||||
# lints python code in src and tests
|
||||
basepython = python3.9
|
||||
deps = -rrequirements.txt
|
||||
commands = black etl application.py config.py utils.py
|
||||
flake8 etl application.py config.py utils.py
|
||||
# pylint etl application.py config.py utils.py
|
||||
|
||||
[testenv:checkdeps]
|
||||
# checks the dependencies for security vulnerabilities and open source licenses
|
||||
deps = -rrequirements.txt
|
||||
commands = safety check
|
||||
liccheck
|
||||
|
|
|
@ -2,10 +2,11 @@ from pathlib import Path
|
|||
import os
|
||||
import logging
|
||||
import shutil
|
||||
import requests
|
||||
import zipfile
|
||||
import urllib3
|
||||
|
||||
import requests
|
||||
|
||||
from config import settings
|
||||
|
||||
|
||||
|
@ -133,12 +134,13 @@ def unzip_file_from_url(
|
|||
# cleanup temporary file
|
||||
os.remove(zip_file_path)
|
||||
|
||||
|
||||
def data_folder_cleanup() -> None:
|
||||
"""Remove all files and directories from the local data/dataset path"""
|
||||
|
||||
data_path = settings.APP_ROOT / "data"
|
||||
|
||||
logger.info(f"Initializing all dataset directoriees")
|
||||
logger.info("Initializing all dataset directoriees")
|
||||
remove_all_from_dir(data_path / "dataset")
|
||||
|
||||
|
||||
|
@ -147,7 +149,7 @@ def score_folder_cleanup() -> None:
|
|||
|
||||
data_path = settings.APP_ROOT / "data"
|
||||
|
||||
logger.info(f"Initializing all score data")
|
||||
logger.info("Initializing all score data")
|
||||
remove_all_from_dir(data_path / "score" / "csv")
|
||||
remove_all_from_dir(data_path / "score" / "geojson")
|
||||
|
||||
|
@ -157,9 +159,10 @@ def temp_folder_cleanup() -> None:
|
|||
|
||||
data_path = settings.APP_ROOT / "data"
|
||||
|
||||
logger.info(f"Initializing all temp directoriees")
|
||||
logger.info("Initializing all temp directoriees")
|
||||
remove_all_from_dir(data_path / "tmp")
|
||||
|
||||
|
||||
def get_excel_column_name(index: int) -> str:
|
||||
"""Map a numeric index to the appropriate column in Excel. E.g., column #95 is "CR".
|
||||
Only works for the first 1000 columns.
|
||||
|
|
Loading…
Add table
Reference in a new issue