adding median income field and running black

This commit is contained in:
lucasmbrown-usds 2021-08-09 20:47:51 -05:00
commit 4ae7eff4c4
6 changed files with 33 additions and 10 deletions

View file

@ -59,7 +59,9 @@ class ScoreETL(ExtractTransformLoad):
# Load census data
census_csv = self.DATA_PATH / "dataset" / "census_acs_2019" / "usa.csv"
self.census_df = pd.read_csv(
census_csv, dtype={self.GEOID_FIELD_NAME: "string"}, low_memory=False,
census_csv,
dtype={self.GEOID_FIELD_NAME: "string"},
low_memory=False,
)
# Load housing and transportation data
@ -121,7 +123,8 @@ class ScoreETL(ExtractTransformLoad):
# Define a named tuple that will be used for each data set input.
DataSet = collections.namedtuple(
typename="DataSet", field_names=["input_field", "renamed_field", "bucket"],
typename="DataSet",
field_names=["input_field", "renamed_field", "bucket"],
)
data_sets = [
@ -138,7 +141,9 @@ class ScoreETL(ExtractTransformLoad):
bucket=None,
),
DataSet(
input_field="ACSTOTPOP", renamed_field="Total population", bucket=None,
input_field="ACSTOTPOP",
renamed_field="Total population",
bucket=None,
),
# The following data sets have buckets, because they're used in the score
DataSet(
@ -244,7 +249,9 @@ class ScoreETL(ExtractTransformLoad):
}
self.df.rename(
columns=renaming_dict, inplace=True, errors="raise",
columns=renaming_dict,
inplace=True,
errors="raise",
)
columns_to_keep = [data_set.renamed_field for data_set in data_sets]

View file

@ -46,7 +46,9 @@ class GeoScoreETL(ExtractTransformLoad):
logger.info("Reading score CSV")
self.score_usa_df = pd.read_csv(
self.TILE_SCORE_CSV, dtype={"GEOID10": "string"}, low_memory=False,
self.TILE_SCORE_CSV,
dtype={"GEOID10": "string"},
low_memory=False,
)
def transform(self) -> None:
@ -68,7 +70,8 @@ class GeoScoreETL(ExtractTransformLoad):
].reset_index(drop=True)
usa_simplified.rename(
columns={self.TARGET_SCORE_NAME: self.TARGET_SCORE_RENAME_TO}, inplace=True,
columns={self.TARGET_SCORE_NAME: self.TARGET_SCORE_RENAME_TO},
inplace=True,
)
logger.info("Aggregating into tracts (~5 minutes)")