adding new fields to comparison

This commit is contained in:
lucasmbrown-usds 2021-09-23 16:11:07 -05:00
parent 86e540b697
commit 495b03149e

View file

@ -72,6 +72,11 @@
"COUNTRY_FIELD_NAME = \"Country\"\n",
"CENSUS_BLOCK_GROUP_POPULATION_FIELD = \"Total population\"\n",
"URBAN_HEURISTIC_FIELD = \"Urban Heuristic Flag\"\n",
"LIFE_EXPECTANCY_FIELD = \"Life expectancy (years)\"\n",
"HEALTH_INSURANCE_FIELD = (\n",
" \"Current lack of health insurance among adults aged 18-64 years\"\n",
")\n",
"BAD_HEALTH_FIELD = \"Physical health not good for >=14 days among adults aged >=18 years\"\n",
"\n",
"CEJST_SCORE_FIELD = \"cejst_score\"\n",
"CEJST_PERCENTILE_FIELD = \"cejst_percentile\"\n",
@ -118,12 +123,11 @@
"outputs": [],
"source": [
"# Analyze one field at a time (useful for setting thresholds)\n",
"\n",
"quantile = 0.8\n",
"\n",
"for field in [\n",
" \"Percent of individuals < 200% Federal Poverty Line\",\n",
" \"Life expectancy (years)\",\n",
" LIFE_EXPECTANCY_FIELD,\n",
" \"Energy burden\",\n",
" URBAN_HEURISTIC_FIELD,\n",
"]:\n",
@ -152,17 +156,15 @@
"CALENVIROSCREEN_PERCENTILE_FIELD = \"calenviroscreen_percentile\"\n",
"CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD = \"calenviroscreen_priority_community\"\n",
"\n",
"calenviroscreen_data_path = (\n",
" DATA_DIR / \"dataset\" / \"calenviroscreen4\" / \"data06.csv\"\n",
")\n",
"calenviroscreen_data_path = DATA_DIR / \"dataset\" / \"calenviroscreen4\" / \"data06.csv\"\n",
"calenviroscreen_df = pd.read_csv(\n",
" calenviroscreen_data_path, dtype={GEOID_TRACT_FIELD_NAME: \"string\"}\n",
")\n",
"\n",
"# Convert priority community field to a bool.\n",
"calenviroscreen_df[\n",
"calenviroscreen_df[CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD] = calenviroscreen_df[\n",
" CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD\n",
"] = calenviroscreen_df[CALENVIROSCREEN_PRIORITY_COMMUNITY_FIELD].astype(bool)\n",
"].astype(bool)\n",
"\n",
"calenviroscreen_df.head()"
]
@ -175,9 +177,7 @@
"outputs": [],
"source": [
"# Load persistent poverty data\n",
"persistent_poverty_path = (\n",
" DATA_DIR / \"dataset\" / \"persistent_poverty\" / \"usa.csv\"\n",
")\n",
"persistent_poverty_path = DATA_DIR / \"dataset\" / \"persistent_poverty\" / \"usa.csv\"\n",
"persistent_poverty_df = pd.read_csv(\n",
" persistent_poverty_path, dtype={GEOID_TRACT_FIELD_NAME: \"string\"}\n",
")\n",
@ -189,9 +189,7 @@
"PERSISTENT_POVERTY_CBG_LEVEL_FIELD = \"Persistent Poverty Census Tract\"\n",
"\n",
"persistent_poverty_df.rename(\n",
" columns={\n",
" PERSISTENT_POVERTY_CBG_LEVEL_FIELD: PERSISTENT_POVERTY_TRACT_LEVEL_FIELD\n",
" },\n",
" columns={PERSISTENT_POVERTY_CBG_LEVEL_FIELD: PERSISTENT_POVERTY_TRACT_LEVEL_FIELD},\n",
" inplace=True,\n",
" errors=\"raise\",\n",
")\n",
@ -282,6 +280,21 @@
"# (`census_tract_indices`).\n",
"census_block_group_indices = [\n",
" Index(\n",
" method_name=\"EJSCREEN Areas of Concern, National, 80th percentile\",\n",
" priority_communities_field=\"EJSCREEN Areas of Concern, National, 80th percentile (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
" Index(\n",
" method_name=\"EJSCREEN Areas of Concern, National, 90th percentile\",\n",
" priority_communities_field=\"EJSCREEN Areas of Concern, National, 90th percentile (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
" Index(\n",
" method_name=\"EJSCREEN Areas of Concern, National, 95th percentile\",\n",
" priority_communities_field=\"EJSCREEN Areas of Concern, National, 95th percentile (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
" Index(\n",
" method_name=\"Score G\",\n",
" priority_communities_field=\"Score G (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
@ -336,21 +349,6 @@
" priority_communities_field=PERSISTENT_POVERTY_CBG_LEVEL_FIELD,\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
" Index(\n",
" method_name=\"EJSCREEN Areas of Concern, National, 80th percentile\",\n",
" priority_communities_field=\"EJSCREEN Areas of Concern, National, 80th percentile (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
" Index(\n",
" method_name=\"EJSCREEN Areas of Concern, National, 90th percentile\",\n",
" priority_communities_field=\"EJSCREEN Areas of Concern, National, 90th percentile (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
" Index(\n",
" method_name=\"EJSCREEN Areas of Concern, National, 95th percentile\",\n",
" priority_communities_field=\"EJSCREEN Areas of Concern, National, 95th percentile (communities)\",\n",
" other_census_tract_fields_to_keep=[],\n",
" ),\n",
"]\n",
"\n",
"census_tract_indices = [\n",
@ -388,8 +386,7 @@
" for priority_communities_field in priority_communities_fields:\n",
" # Calculate the population included as priority communities per CBG. Will either be 0 or the population.\n",
" df[f\"{priority_communities_field}{POPULATION_SUFFIX}\"] = (\n",
" df[priority_communities_field]\n",
" * df[CENSUS_BLOCK_GROUP_POPULATION_FIELD]\n",
" df[priority_communities_field] * df[CENSUS_BLOCK_GROUP_POPULATION_FIELD]\n",
" )\n",
"\n",
" def calculate_state_comparison(\n",
@ -428,9 +425,7 @@
" summary_dict[\"Geography name\"] = division_id\n",
"\n",
" total_cbgs_in_geography = len(frame)\n",
" total_population_in_geography = frame[\n",
" CENSUS_BLOCK_GROUP_POPULATION_FIELD\n",
" ].sum()\n",
" total_population_in_geography = frame[CENSUS_BLOCK_GROUP_POPULATION_FIELD].sum()\n",
"\n",
" if geography_field == URBAN_HEURISTIC_FIELD:\n",
" urban_flag = frame[URBAN_HEURISTIC_FIELD].unique()[0]\n",
@ -438,9 +433,9 @@
" summary_dict[\"Geography name\"] = summary_dict[\"Urban vs Rural\"]\n",
"\n",
" for priority_communities_field in priority_communities_fields:\n",
" summary_dict[\n",
" summary_dict[f\"{priority_communities_field}{POPULATION_SUFFIX}\"] = frame[\n",
" f\"{priority_communities_field}{POPULATION_SUFFIX}\"\n",
" ] = frame[f\"{priority_communities_field}{POPULATION_SUFFIX}\"].sum()\n",
" ].sum()\n",
"\n",
" summary_dict[f\"{priority_communities_field} (total CBGs)\"] = frame[\n",
" f\"{priority_communities_field}\"\n",
@ -452,9 +447,7 @@
" / total_cbgs_in_geography\n",
" )\n",
"\n",
" summary_dict[\n",
" f\"{priority_communities_field} (percent population)\"\n",
" ] = (\n",
" summary_dict[f\"{priority_communities_field} (percent population)\"] = (\n",
" summary_dict[f\"{priority_communities_field}{POPULATION_SUFFIX}\"]\n",
" / total_population_in_geography\n",
" )\n",
@ -500,9 +493,7 @@
"\n",
" # Run the comparison function on the groups.\n",
" region_distribution_df = region_grouped_df.progress_apply(\n",
" lambda frame: calculate_state_comparison(\n",
" frame, geography_field=\"region\"\n",
" )\n",
" lambda frame: calculate_state_comparison(frame, geography_field=\"region\")\n",
" )\n",
"\n",
" # Next, run the comparison by division\n",
@ -510,9 +501,7 @@
"\n",
" # Run the comparison function on the groups.\n",
" division_distribution_df = division_grouped_df.progress_apply(\n",
" lambda frame: calculate_state_comparison(\n",
" frame, geography_field=\"division\"\n",
" )\n",
" lambda frame: calculate_state_comparison(frame, geography_field=\"division\")\n",
" )\n",
"\n",
" # Next, run the comparison by urban/rural\n",
@ -567,9 +556,7 @@
" column_character = get_excel_column_name(column_index)\n",
"\n",
" # Set all columns to larger width\n",
" worksheet.set_column(\n",
" f\"{column_character}:{column_character}\", column_width\n",
" )\n",
" worksheet.set_column(f\"{column_character}:{column_character}\", column_width)\n",
"\n",
" # Special formatting for all percent columns\n",
" # Note: we can't just search for `percent`, because that's included in the word `percentile`.\n",
@ -584,7 +571,9 @@
"\n",
" # Special formatting for columns that capture the percent of population considered priority.\n",
" if \"(percent population)\" in column:\n",
" column_ranges = f\"{column_character}2:{column_character}{len(state_distribution_df)+1}\"\n",
" column_ranges = (\n",
" f\"{column_character}2:{column_character}{len(state_distribution_df)+1}\"\n",
" )\n",
"\n",
" # Add green to red conditional formatting.\n",
" worksheet.conditional_format(\n",
@ -616,7 +605,7 @@
"]\n",
"\n",
"# Convert all indices to boolean\n",
"for field_to_analyze in fields_to_analyze: \n",
"for field_to_analyze in fields_to_analyze:\n",
" if \"Areas of Concern\" in field_to_analyze:\n",
" print(f\"Converting {field_to_analyze} to boolean.\")\n",
"\n",
@ -705,9 +694,7 @@
"\n",
" # Put criteria description column first.\n",
" new_column_order = [criteria_description_field_name] + [\n",
" col\n",
" for col in comparison_df.columns\n",
" if col != criteria_description_field_name\n",
" col for col in comparison_df.columns if col != criteria_description_field_name\n",
" ]\n",
"\n",
" comparison_df = comparison_df[new_column_order]\n",
@ -753,12 +740,12 @@
" column_character = get_excel_column_name(column_index)\n",
"\n",
" # Set all columns to larger width\n",
" worksheet.set_column(\n",
" f\"{column_character}:{column_character}\", column_width\n",
" )\n",
" worksheet.set_column(f\"{column_character}:{column_character}\", column_width)\n",
"\n",
" # Add green to red conditional formatting.\n",
" column_ranges = f\"{column_character}2:{column_character}{len(cbg_score_comparison_df)+1}\"\n",
" column_ranges = (\n",
" f\"{column_character}2:{column_character}{len(cbg_score_comparison_df)+1}\"\n",
" )\n",
" worksheet.conditional_format(\n",
" column_ranges,\n",
" # Min: green, max: red.\n",
@ -771,11 +758,7 @@
"\n",
" # Special formatting for all percent columns\n",
" # Note: we can't just search for `percent`, because that's included in the word `percentile`.\n",
" if (\n",
" \"percent \" in column\n",
" or \"(percent)\" in column\n",
" or \"Percent \" in column\n",
" ):\n",
" if \"percent \" in column or \"(percent)\" in column or \"Percent \" in column:\n",
" # Make these columns percentages.\n",
" percentage_format = workbook.add_format({\"num_format\": \"0%\"})\n",
" worksheet.set_column(\n",
@ -813,7 +796,9 @@
" )\n",
"\n",
" # Write secondary comparison to CSV.\n",
" file_name_part = f\"CBG Comparison Output - {index_a.method_name} and {index_b.method_name}\"\n",
" file_name_part = (\n",
" f\"CBG Comparison Output - {index_a.method_name} and {index_b.method_name}\"\n",
" )\n",
" output_dir.mkdir(parents=True, exist_ok=True)\n",
" file_path = output_dir / (file_name_part + \".csv\")\n",
" file_path_xlsx = output_dir / (file_name_part + \".xlsx\")\n",
@ -836,10 +821,12 @@
" \"Median household income (% of AMI)\",\n",
" \"Percent of households in linguistic isolation\",\n",
" \"Percent individuals age 25 or over with less than high school degree\",\n",
" \"Linguistic isolation (percent)\",\n",
" \"Unemployed civilians (percent)\",\n",
" \"Median household income in the past 12 months\",\n",
" URBAN_HEURISTIC_FIELD,\n",
" LIFE_EXPECTANCY_FIELD,\n",
" HEALTH_INSURANCE_FIELD,\n",
" BAD_HEALTH_FIELD,\n",
"]\n",
"\n",
"for (index_a, index_b) in itertools.combinations(census_block_group_indices, 2):\n",
@ -897,9 +884,7 @@
"\n",
" # List of all states/territories in their FIPS codes:\n",
" state_ids = sorted(df[state_field].unique())\n",
" state_names = \", \".join(\n",
" [us.states.lookup(state_id).name for state_id in state_ids]\n",
" )\n",
" state_names = \", \".join([us.states.lookup(state_id).name for state_id in state_ids])\n",
"\n",
" # Create markdown content for comparisons.\n",
" markdown_content = f\"\"\"\n",
@ -913,9 +898,7 @@
"\n",
"\"\"\"\n",
"\n",
" for (index1, index2) in itertools.combinations(\n",
" census_block_group_indices, 2\n",
" ):\n",
" for (index1, index2) in itertools.combinations(census_block_group_indices, 2):\n",
" # Group all data by their different values on Priority Communities Field for Index1 vs Priority Communities Field for Index2.\n",
" count_df = (\n",
" df.groupby(\n",
@ -954,24 +937,16 @@
"\n",
" # Convert from series to a scalar value, including accounting for if no data exists for that pairing.\n",
" true_true_cbgs = (\n",
" true_true_cbgs_series.iloc[0]\n",
" if len(true_true_cbgs_series) > 0\n",
" else 0\n",
" true_true_cbgs_series.iloc[0] if len(true_true_cbgs_series) > 0 else 0\n",
" )\n",
" true_false_cbgs = (\n",
" true_false_cbgs_series.iloc[0]\n",
" if len(true_false_cbgs_series) > 0\n",
" else 0\n",
" true_false_cbgs_series.iloc[0] if len(true_false_cbgs_series) > 0 else 0\n",
" )\n",
" false_true_cbgs = (\n",
" false_true_cbgs_series.iloc[0]\n",
" if len(false_true_cbgs_series) > 0\n",
" else 0\n",
" false_true_cbgs_series.iloc[0] if len(false_true_cbgs_series) > 0 else 0\n",
" )\n",
" false_false_cbgs = (\n",
" false_false_cbgs_series.iloc[0]\n",
" if len(false_false_cbgs_series) > 0\n",
" else 0\n",
" false_false_cbgs_series.iloc[0] if len(false_false_cbgs_series) > 0 else 0\n",
" )\n",
"\n",
" markdown_content += (\n",
@ -1163,20 +1138,15 @@
"\n",
" # Calculate comparison\n",
" # A comparison priority tract has at least one CBG that is a priority CBG.\n",
" df[\n",
" comparison_field_names.method_b_tract_has_at_least_one_method_a_cbg\n",
" ] = (\n",
" df[comparison_field_names.method_b_tract_has_at_least_one_method_a_cbg] = (\n",
" frame.loc[:, method_a_priority_census_block_groups_field].sum() > 0\n",
" if is_a_method_b_priority_tract\n",
" else None\n",
" )\n",
"\n",
" # A comparison priority tract has all of its contained CBGs as CBG priority CBGs.\n",
" df[\n",
" comparison_field_names.method_b_tract_has_100_percent_method_a_cbg\n",
" ] = (\n",
" frame.loc[:, method_a_priority_census_block_groups_field].mean()\n",
" == 1\n",
" df[comparison_field_names.method_b_tract_has_100_percent_method_a_cbg] = (\n",
" frame.loc[:, method_a_priority_census_block_groups_field].mean() == 1\n",
" if is_a_method_b_priority_tract\n",
" else None\n",
" )\n",
@ -1195,8 +1165,7 @@
" df[\n",
" comparison_field_names.method_b_non_priority_tract_has_100_percent_method_a_cbg\n",
" ] = (\n",
" frame.loc[:, method_a_priority_census_block_groups_field].mean()\n",
" == 1\n",
" frame.loc[:, method_a_priority_census_block_groups_field].mean() == 1\n",
" if not is_a_method_b_priority_tract\n",
" else None\n",
" )\n",
@ -1208,6 +1177,9 @@
" \"Percent of households in linguistic isolation\",\n",
" \"Percent individuals age 25 or over with less than high school degree\",\n",
" \"Unemployed civilians (percent)\",\n",
" LIFE_EXPECTANCY_FIELD,\n",
" HEALTH_INSURANCE_FIELD,\n",
" BAD_HEALTH_FIELD,\n",
" ]:\n",
" df[f\"{field} (average of CBGs)\"] = frame.loc[:, field].mean()\n",
"\n",
@ -1237,20 +1209,14 @@
"\n",
" # List of all states/territories in their FIPS codes:\n",
" state_ids = sorted(original_df[state_field].unique())\n",
" state_names = \", \".join(\n",
" [us.states.lookup(state_id).name for state_id in state_ids]\n",
" )\n",
" state_names = \", \".join([us.states.lookup(state_id).name for state_id in state_ids])\n",
"\n",
" # Note: using squeeze throughout do reduce result of `sum()` to a scalar.\n",
" # TODO: investigate why sums are sometimes series and sometimes scalar.\n",
" method_a_priority_cbgs = (\n",
" original_df.loc[:, method_a_priority_census_block_groups_field]\n",
" .sum()\n",
" .squeeze()\n",
" )\n",
" method_a_priority_cbgs_percent = (\n",
" f\"{method_a_priority_cbgs / total_cbgs:.0%}\"\n",
" original_df.loc[:, method_a_priority_census_block_groups_field].sum().squeeze()\n",
" )\n",
" method_a_priority_cbgs_percent = f\"{method_a_priority_cbgs / total_cbgs:.0%}\"\n",
"\n",
" total_tracts_count = len(comparison_df)\n",
"\n",
@ -1272,9 +1238,7 @@
" .sum()\n",
" .squeeze()\n",
" )\n",
" method_a_tracts_count_percent = (\n",
" f\"{method_a_tracts_count / total_tracts_count:.0%}\"\n",
" )\n",
" method_a_tracts_count_percent = f\"{method_a_tracts_count / total_tracts_count:.0%}\"\n",
"\n",
" # Method A priority community stats\n",
" method_b_tracts_with_at_least_one_method_a_cbg = comparison_df.loc[\n",
@ -1405,8 +1369,7 @@
"\n",
" # Write comparison to CSV.\n",
" file_path = (\n",
" output_dir\n",
" / f\"Comparison Output - {method_a_name} and {method_b_name}.csv\"\n",
" output_dir / f\"Comparison Output - {method_a_name} and {method_b_name}.csv\"\n",
" )\n",
" comparison_df.to_csv(\n",
" path_or_buf=file_path,\n",