mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-02-22 17:44:20 -08:00
parent
cb4866b93f
commit
3ba1c620f5
8 changed files with 24 additions and 28 deletions
|
@ -335,3 +335,9 @@ fields:
|
|||
- score_name: There is at least one Formerly Used Defense Site (FUDS) in the tract and the tract is low income.
|
||||
label: There is at least one Formerly Used Defense Site (FUDS) in the tract and the tract is low income.
|
||||
format: bool
|
||||
- score_name: Tract-level redlining score meets or exceeds 3.25 and is low income
|
||||
label: Tract experienced historic underinvestment and remains low income
|
||||
format: bool
|
||||
- score_name: Tract-level redlining score meets or exceeds 3.25
|
||||
label: Tract experienced historic underinvestment
|
||||
format: bool
|
||||
|
|
|
@ -339,3 +339,9 @@ sheets:
|
|||
- score_name: There is at least one Formerly Used Defense Site (FUDS) in the tract and the tract is low income.
|
||||
label: There is at least one Formerly Used Defense Site (FUDS) in the tract and the tract is low income.
|
||||
format: bool
|
||||
- score_name: Tract-level redlining score meets or exceeds 3.25 and is low income
|
||||
label: Tract experienced historic underinvestment and remains low income
|
||||
format: bool
|
||||
- score_name: Tract-level redlining score meets or exceeds 3.25
|
||||
label: Tract experienced historic underinvestment
|
||||
format: bool
|
||||
|
|
|
@ -303,9 +303,9 @@ TILES_SCORE_COLUMNS = {
|
|||
field_names.FUTURE_FLOOD_RISK_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "FLD_PFS",
|
||||
field_names.FUTURE_WILDFIRE_RISK_FIELD
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "WF_PFS",
|
||||
+ field_names.PERCENTILE_FIELD_SUFFIX: "WFR_PFS",
|
||||
field_names.HIGH_FUTURE_FLOOD_RISK_FIELD: "FLD_ET",
|
||||
field_names.HIGH_FUTURE_WILDFIRE_RISK_FIELD: "WF_ET",
|
||||
field_names.HIGH_FUTURE_WILDFIRE_RISK_FIELD: "WFR_ET",
|
||||
field_names.ADJACENT_TRACT_SCORE_ABOVE_DONUT_THRESHOLD: "ADJ_ET",
|
||||
field_names.SCORE_N_COMMUNITIES
|
||||
+ field_names.ADJACENCY_INDEX_SUFFIX: "ADJ_PFS",
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -27,7 +27,7 @@ class FloodRiskETL(ExtractTransformLoad):
|
|||
def __init__(self):
|
||||
# define the full path for the input CSV file
|
||||
self.INPUT_CSV = (
|
||||
self.get_tmp_path() / "fsf_flood" / "flood_tract_2010.csv"
|
||||
self.get_tmp_path() / "fsf_flood" / "flood-tract2010.csv"
|
||||
)
|
||||
|
||||
# this is the main dataframe
|
||||
|
@ -50,24 +50,16 @@ class FloodRiskETL(ExtractTransformLoad):
|
|||
|
||||
# read in the unzipped csv data source then rename the
|
||||
# Census Tract column for merging
|
||||
df_fsf_flood_disagg: pd.DataFrame = pd.read_csv(
|
||||
df_fsf_flood: pd.DataFrame = pd.read_csv(
|
||||
self.INPUT_CSV,
|
||||
dtype={self.INPUT_GEOID_TRACT_FIELD_NAME: str},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
df_fsf_flood_disagg[self.GEOID_TRACT_FIELD_NAME] = df_fsf_flood_disagg[
|
||||
df_fsf_flood[self.GEOID_TRACT_FIELD_NAME] = df_fsf_flood[
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME
|
||||
].str.zfill(11)
|
||||
|
||||
# Because we have some tracts that are listed twice, we aggregate based on
|
||||
# GEOID10_TRACT. Note that I haven't confirmed this with the FSF boys -- to do!
|
||||
df_fsf_flood = (
|
||||
df_fsf_flood_disagg.groupby(self.GEOID_TRACT_FIELD_NAME)
|
||||
.sum()
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
df_fsf_flood[self.COUNT_PROPERTIES] = df_fsf_flood[
|
||||
self.COUNT_PROPERTIES_NATIVE_FIELD_NAME
|
||||
].clip(lower=self.CLIP_PROPERTIES_COUNT)
|
||||
|
|
|
@ -26,9 +26,7 @@ class WildfireRiskETL(ExtractTransformLoad):
|
|||
|
||||
def __init__(self):
|
||||
# define the full path for the input CSV file
|
||||
self.INPUT_CSV = (
|
||||
self.get_tmp_path() / "fsf_fire" / "fire_tract_2010.csv"
|
||||
)
|
||||
self.INPUT_CSV = self.get_tmp_path() / "fsf_fire" / "fire-tract2010.csv"
|
||||
|
||||
# this is the main dataframe
|
||||
self.df: pd.DataFrame
|
||||
|
@ -49,24 +47,16 @@ class WildfireRiskETL(ExtractTransformLoad):
|
|||
logger.info("Transforming National Risk Index Data")
|
||||
# read in the unzipped csv data source then rename the
|
||||
# Census Tract column for merging
|
||||
df_fsf_fire_disagg: pd.DataFrame = pd.read_csv(
|
||||
df_fsf_fire: pd.DataFrame = pd.read_csv(
|
||||
self.INPUT_CSV,
|
||||
dtype={self.INPUT_GEOID_TRACT_FIELD_NAME: str},
|
||||
low_memory=False,
|
||||
)
|
||||
|
||||
df_fsf_fire_disagg[self.GEOID_TRACT_FIELD_NAME] = df_fsf_fire_disagg[
|
||||
df_fsf_fire[self.GEOID_TRACT_FIELD_NAME] = df_fsf_fire[
|
||||
self.INPUT_GEOID_TRACT_FIELD_NAME
|
||||
].str.zfill(11)
|
||||
|
||||
# Because we have some tracts that are listed twice, we aggregate based on
|
||||
# GEOID10_TRACT. Note that I haven't confirmed this with the FSF boys -- to do!
|
||||
df_fsf_fire = (
|
||||
df_fsf_fire_disagg.groupby(self.GEOID_TRACT_FIELD_NAME)
|
||||
.sum()
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
df_fsf_fire[self.COUNT_PROPERTIES] = df_fsf_fire[
|
||||
self.COUNT_PROPERTIES_NATIVE_FIELD_NAME
|
||||
].clip(lower=self.CLIP_PROPERTIES_COUNT)
|
||||
|
|
|
@ -1409,6 +1409,8 @@ def get_excel_column_name(index: int) -> str:
|
|||
"ALI",
|
||||
"ALJ",
|
||||
"ALK",
|
||||
"ALL",
|
||||
"ALM",
|
||||
]
|
||||
|
||||
return excel_column_names[index]
|
||||
|
|
Loading…
Add table
Reference in a new issue