Merge branch 'emma-nechamkin/release/score-narwhal' of github.com:usds/justice40-tool into emma-nechamkin/release/score-narwhal

This commit is contained in:
Emma Nechamkin 2022-09-07 13:48:22 -04:00
commit 31eac4101e
12 changed files with 865 additions and 507 deletions

View file

@ -95,12 +95,6 @@ DATASET_LIST = [
"class_name": "GeoCorrETL",
"is_memory_intensive": False,
},
{
"name": "child_opportunity_index",
"module_dir": "child_opportunity_index",
"class_name": "ChildOpportunityIndex",
"is_memory_intensive": False,
},
{
"name": "mapping_inequality",
"module_dir": "mapping_inequality",

View file

@ -397,7 +397,7 @@ TILES_SCORE_FLOAT_COLUMNS = [
# Geojson cannot support nulls in a boolean column when we create tiles;
# to preserve null character, we coerce to floats for all fields
# that use null to signify missing information in a boolean field.
field_names.ELIGIBLE_FUDS_BINARY_FIELD_NAME,
field_names.AML_BOOLEAN,
field_names.ELIGIBLE_FUDS_BINARY_FIELD_NAME,
field_names.AML_BOOLEAN,
field_names.HISTORIC_REDLINING_SCORE_EXCEEDED
]

View file

@ -42,10 +42,9 @@ class ScoreETL(ExtractTransformLoad):
self.doe_energy_burden_df: pd.DataFrame
self.national_risk_index_df: pd.DataFrame
self.geocorr_urban_rural_df: pd.DataFrame
self.persistent_poverty_df: pd.DataFrame
self.census_decennial_df: pd.DataFrame
self.census_2010_df: pd.DataFrame
self.child_opportunity_index_df: pd.DataFrame
self.national_tract_df: pd.DataFrame
self.hrs_df: pd.DataFrame
self.dot_travel_disadvantage_df: pd.DataFrame
self.fsf_flood_df: pd.DataFrame
@ -159,16 +158,6 @@ class ScoreETL(ExtractTransformLoad):
low_memory=False,
)
# Load persistent poverty
persistent_poverty_csv = (
constants.DATA_PATH / "dataset" / "persistent_poverty" / "usa.csv"
)
self.persistent_poverty_df = pd.read_csv(
persistent_poverty_csv,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
# Load decennial census data
census_decennial_csv = (
constants.DATA_PATH
@ -192,19 +181,6 @@ class ScoreETL(ExtractTransformLoad):
low_memory=False,
)
# Load COI data
child_opportunity_index_csv = (
constants.DATA_PATH
/ "dataset"
/ "child_opportunity_index"
/ "usa.csv"
)
self.child_opportunity_index_df = pd.read_csv(
child_opportunity_index_csv,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
# Load HRS data
hrs_csv = (
constants.DATA_PATH / "dataset" / "historic_redlining" / "usa.csv"
@ -216,6 +192,15 @@ class ScoreETL(ExtractTransformLoad):
low_memory=False,
)
national_tract_csv = constants.DATA_CENSUS_CSV_FILE_PATH
self.national_tract_df = pd.read_csv(
national_tract_csv,
names=[self.GEOID_TRACT_FIELD_NAME],
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
header=None,
)
def _join_tract_dfs(self, census_tract_dfs: list) -> pd.DataFrame:
logger.info("Joining Census Tract dataframes")
@ -363,12 +348,10 @@ class ScoreETL(ExtractTransformLoad):
self.doe_energy_burden_df,
self.ejscreen_df,
self.geocorr_urban_rural_df,
self.persistent_poverty_df,
self.national_risk_index_df,
self.census_acs_median_incomes_df,
self.census_decennial_df,
self.census_2010_df,
self.child_opportunity_index_df,
self.hrs_df,
self.dot_travel_disadvantage_df,
self.fsf_flood_df,
@ -384,8 +367,21 @@ class ScoreETL(ExtractTransformLoad):
census_tract_df = self._join_tract_dfs(census_tract_dfs)
# If GEOID10s are read as numbers instead of strings, the initial 0 is dropped,
# and then we get too many CBG rows (one for 012345 and one for 12345).
# Drop tracts that don't exist in the 2010 tracts
pre_join_len = census_tract_df[field_names.GEOID_TRACT_FIELD].nunique()
census_tract_df = census_tract_df.merge(
self.national_tract_df,
on="GEOID10_TRACT",
how="inner",
)
assert (
census_tract_df.shape[0] <= pre_join_len
), "Join against national tract list ADDED rows"
logger.info(
"Dropped %s tracts not in the 2010 tract data",
pre_join_len - census_tract_df[field_names.GEOID_TRACT_FIELD].nunique()
)
# Now sanity-check the merged df.
self._census_tract_df_sanity_check(
@ -455,9 +451,6 @@ class ScoreETL(ExtractTransformLoad):
field_names.CENSUS_UNEMPLOYMENT_FIELD_2010,
field_names.CENSUS_POVERTY_LESS_THAN_100_FPL_FIELD_2010,
field_names.CENSUS_DECENNIAL_TOTAL_POPULATION_FIELD_2009,
field_names.EXTREME_HEAT_FIELD,
field_names.HEALTHY_FOOD_FIELD,
field_names.IMPENETRABLE_SURFACES_FIELD,
field_names.UST_FIELD,
field_names.DOT_TRAVEL_BURDEN_FIELD,
field_names.FUTURE_FLOOD_RISK_FIELD,
@ -479,7 +472,6 @@ class ScoreETL(ExtractTransformLoad):
non_numeric_columns = [
self.GEOID_TRACT_FIELD_NAME,
field_names.PERSISTENT_POVERTY_FIELD,
field_names.TRACT_ELIGIBLE_FOR_NONNATURAL_THRESHOLD,
field_names.AGRICULTURAL_VALUE_BOOL_FIELD,
]
@ -509,10 +501,6 @@ class ScoreETL(ExtractTransformLoad):
# This low field will not exist yet, it is only calculated for the
# percentile.
# TODO: This will come from the YAML dataset config
ReversePercentile(
field_name=field_names.READING_FIELD,
low_field_name=field_names.LOW_READING_FIELD,
),
ReversePercentile(
field_name=field_names.MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD,
low_field_name=field_names.LOW_MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD,

View file

@ -45,7 +45,6 @@ class PostScoreETL(ExtractTransformLoad):
self.input_counties_df: pd.DataFrame
self.input_states_df: pd.DataFrame
self.input_score_df: pd.DataFrame
self.input_national_tract_df: pd.DataFrame
self.output_score_county_state_merged_df: pd.DataFrame
self.output_score_tiles_df: pd.DataFrame
@ -92,7 +91,9 @@ class PostScoreETL(ExtractTransformLoad):
def _extract_score(self, score_path: Path) -> pd.DataFrame:
logger.info("Reading Score CSV")
df = pd.read_csv(
score_path, dtype={self.GEOID_TRACT_FIELD_NAME: "string"}
score_path,
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
)
# Convert total population to an int
@ -102,18 +103,6 @@ class PostScoreETL(ExtractTransformLoad):
return df
def _extract_national_tract(
self, national_tract_path: Path
) -> pd.DataFrame:
logger.info("Reading national tract file")
return pd.read_csv(
national_tract_path,
names=[self.GEOID_TRACT_FIELD_NAME],
dtype={self.GEOID_TRACT_FIELD_NAME: "string"},
low_memory=False,
header=None,
)
def extract(self) -> None:
logger.info("Starting Extraction")
@ -136,9 +125,6 @@ class PostScoreETL(ExtractTransformLoad):
self.input_score_df = self._extract_score(
constants.DATA_SCORE_CSV_FULL_FILE_PATH
)
self.input_national_tract_df = self._extract_national_tract(
constants.DATA_CENSUS_CSV_FILE_PATH
)
def _transform_counties(
self, initial_counties_df: pd.DataFrame
@ -185,7 +171,6 @@ class PostScoreETL(ExtractTransformLoad):
def _create_score_data(
self,
national_tract_df: pd.DataFrame,
counties_df: pd.DataFrame,
states_df: pd.DataFrame,
score_df: pd.DataFrame,
@ -217,28 +202,11 @@ class PostScoreETL(ExtractTransformLoad):
right_on=self.STATE_CODE_COLUMN,
how="left",
)
# check if there are census tracts without score
logger.info("Removing tract rows without score")
# merge census tracts with score
merged_df = national_tract_df.merge(
score_county_state_merged,
on=self.GEOID_TRACT_FIELD_NAME,
how="left",
)
# recast population to integer
score_county_state_merged["Total population"] = (
merged_df["Total population"].fillna(0).astype(int)
)
de_duplicated_df = merged_df.dropna(
subset=[DISADVANTAGED_COMMUNITIES_FIELD]
)
assert score_county_merged[
self.GEOID_TRACT_FIELD_NAME
].is_unique, "Merging state/county data introduced duplicate rows"
# set the score to the new df
return de_duplicated_df
return score_county_state_merged
def _create_tile_data(
self,
@ -427,7 +395,6 @@ class PostScoreETL(ExtractTransformLoad):
transformed_score = self._transform_score(self.input_score_df)
output_score_county_state_merged_df = self._create_score_data(
self.input_national_tract_df,
transformed_counties,
transformed_states,
transformed_score,

View file

@ -67,14 +67,12 @@ def test_transform_score(etl, score_data_initial, score_transformed_expected):
# pylint: disable=too-many-arguments
def test_create_score_data(
etl,
national_tract_df,
counties_transformed_expected,
states_transformed_expected,
score_transformed_expected,
score_data_expected,
):
score_data_actual = etl._create_score_data(
national_tract_df,
counties_transformed_expected,
states_transformed_expected,
score_transformed_expected,

View file

@ -59,7 +59,7 @@ class TribalETL(ExtractTransformLoad):
)
bia_national_lar_df.rename(
columns={"TSAID": "tribalId", "LARName": "landAreaName"},
columns={"LARID": "tribalId", "LARName": "landAreaName"},
inplace=True,
)
@ -154,7 +154,9 @@ class TribalETL(ExtractTransformLoad):
# load the geojsons
bia_national_lar_geojson = (
self.GEOJSON_BASE_PATH / "bia_national_lar" / "BIA_TSA.json"
self.GEOJSON_BASE_PATH
/ "bia_national_lar"
/ "BIA_National_LAR.json"
)
bia_aian_supplemental_geojson = (
self.GEOJSON_BASE_PATH

View file

@ -318,21 +318,6 @@ MARYLAND_EJSCREEN_SCORE_FIELD: str = "Maryland Environmental Justice Score"
MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD: str = (
"Maryland EJSCREEN Priority Community"
)
# Child Opportunity Index data
# Summer days with maximum temperature above 90F.
EXTREME_HEAT_FIELD = "Summer days above 90F"
# Percentage households without a car located further than a half-mile from the
# nearest supermarket.
HEALTHY_FOOD_FIELD = "Percent low access to healthy food"
# Percentage impenetrable surface areas such as rooftops, roads or parking lots.
IMPENETRABLE_SURFACES_FIELD = "Percent impenetrable surface areas"
# Percentage third graders scoring proficient on standardized reading tests,
# converted to NAEP scale score points.
READING_FIELD = "Third grade reading proficiency"
LOW_READING_FIELD = "Low third grade reading proficiency"
# Alternative energy-related definition of DACs
ENERGY_RELATED_COMMUNITIES_DEFINITION_ALTERNATIVE = (

View file

@ -1,12 +1,217 @@
import pandas as pd
import pytest
from data_pipeline.config import settings
from data_pipeline.score import field_names
from data_pipeline.score.field_names import GEOID_TRACT_FIELD
from data_pipeline.etl.score import constants
@pytest.fixture(scope="session")
def final_score_df():
return pd.read_csv(
settings.APP_ROOT / "data" / "score" / "csv" / "full" / "usa.csv",
dtype={field_names.GEOID_TRACT_FIELD: str},
dtype={GEOID_TRACT_FIELD: str},
low_memory=False,
)
@pytest.fixture()
def census_df():
census_csv = constants.DATA_PATH / "dataset" / "census_acs_2019" / "usa.csv"
return pd.read_csv(
census_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def ejscreen_df():
ejscreen_csv = constants.DATA_PATH / "dataset" / "ejscreen" / "usa.csv"
return pd.read_csv(
ejscreen_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def hud_housing_df():
hud_housing_csv = (
constants.DATA_PATH / "dataset" / "hud_housing" / "usa.csv"
)
return pd.read_csv(
hud_housing_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def cdc_places_df():
cdc_places_csv = constants.DATA_PATH / "dataset" / "cdc_places" / "usa.csv"
return pd.read_csv(
cdc_places_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def census_acs_median_incomes_df():
census_acs_median_incomes_csv = (
constants.DATA_PATH
/ "dataset"
/ "census_acs_median_income_2019"
/ "usa.csv"
)
return pd.read_csv(
census_acs_median_incomes_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def cdc_life_expectancy_df():
cdc_life_expectancy_csv = (
constants.DATA_PATH / "dataset" / "cdc_life_expectancy" / "usa.csv"
)
return pd.read_csv(
cdc_life_expectancy_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def doe_energy_burden_df():
doe_energy_burden_csv = (
constants.DATA_PATH / "dataset" / "doe_energy_burden" / "usa.csv"
)
return pd.read_csv(
doe_energy_burden_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def national_risk_index_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "national_risk_index" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def dot_travel_disadvantage_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "travel_composite" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def fsf_fire_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "fsf_wildfire_risk" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def fsf_flood_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "fsf_flood_risk" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def nature_deprived_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "nlcd_nature_deprived" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def eamlis_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "eamlis" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def fuds_df():
return pd.read_csv(
constants.DATA_PATH / "dataset" / "us_army_fuds" / "usa.csv",
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def geocorr_urban_rural_df():
geocorr_urban_rural_csv = (
constants.DATA_PATH / "dataset" / "geocorr" / "usa.csv"
)
return pd.read_csv(
geocorr_urban_rural_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def census_decennial_df():
census_decennial_csv = (
constants.DATA_PATH / "dataset" / "census_decennial_2010" / "usa.csv"
)
return pd.read_csv(
census_decennial_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def census_2010_df():
census_2010_csv = (
constants.DATA_PATH / "dataset" / "census_acs_2010" / "usa.csv"
)
return pd.read_csv(
census_2010_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def hrs_df():
hrs_csv = constants.DATA_PATH / "dataset" / "historic_redlining" / "usa.csv"
return pd.read_csv(
hrs_csv,
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
)
@pytest.fixture()
def national_tract_df():
national_tract_csv = constants.DATA_CENSUS_CSV_FILE_PATH
return pd.read_csv(
national_tract_csv,
names=[GEOID_TRACT_FIELD],
dtype={GEOID_TRACT_FIELD: "string"},
low_memory=False,
header=None,
)

View file

@ -28,7 +28,6 @@ class PercentileTestConfig:
return self.percentile_column_name
### TODO: we need to blow this out for all eight categories
def _check_percentile_against_threshold(df, config: PercentileTestConfig):
"""Note - for the purpose of testing, this fills with False"""
is_minimum_flagged_ok = (

View file

@ -1,12 +1,37 @@
# flake8: noqa: W0613,W0611,F811
# flake8: noqa: W0613,W0611,F811,
# pylint: disable=unused-import,too-many-arguments
from dataclasses import dataclass
from typing import List
import pytest
import pandas as pd
import numpy as np
from data_pipeline.score import field_names
from .fixtures import final_score_df # pylint: disable=unused-import
from data_pipeline.score.field_names import GEOID_TRACT_FIELD
from .fixtures import (
final_score_df,
ejscreen_df,
hud_housing_df,
census_df,
cdc_places_df,
census_acs_median_incomes_df,
cdc_life_expectancy_df,
doe_energy_burden_df,
national_risk_index_df,
dot_travel_disadvantage_df,
fsf_fire_df,
nature_deprived_df,
eamlis_df,
fuds_df,
geocorr_urban_rural_df,
census_decennial_df,
census_2010_df,
hrs_df,
national_tract_df,
)
pytestmark = pytest.mark.smoketest
UNMATCHED_TRACK_THRESHOLD = 1000
def _helper_test_count_exceeding_threshold(df, col, error_check=1000):
@ -203,3 +228,98 @@ def test_donut_hole_addition_to_score_n(final_score_df):
assert (
new_donuts > 0
), "FYI: The adjacency index is doing nothing. Consider removing it?"
def test_data_sources(
final_score_df,
hud_housing_df,
ejscreen_df,
census_df,
cdc_places_df,
census_acs_median_incomes_df,
cdc_life_expectancy_df,
doe_energy_burden_df,
national_risk_index_df,
dot_travel_disadvantage_df,
fsf_fire_df,
nature_deprived_df,
eamlis_df,
fuds_df,
geocorr_urban_rural_df,
census_decennial_df,
census_2010_df,
hrs_df,
):
data_sources = {
key: value for key, value in locals().items() if key != "final_score_df"
}
for data_source_name, data_source in data_sources.items():
final = "final_"
df: pd.DataFrame = final_score_df.merge(
data_source,
on=GEOID_TRACT_FIELD,
indicator="MERGE",
suffixes=(final, f"_{data_source_name}"),
how="outer",
)
# Make our lists of columns for later comparison
core_cols = data_source.columns.intersection(
final_score_df.columns
).drop(GEOID_TRACT_FIELD)
data_source_columns = [f"{col}_{data_source_name}" for col in core_cols]
final_columns = [f"{col}{final}" for col in core_cols]
assert (
final_columns
), f"No columns from data source show up in final score in source {data_source_name}"
# Make sure we have NAs for any tracts in the final data that aren't
# covered in the final data
assert np.all(df[df.MERGE == "left_only"][final_columns].isna())
# Make sure the datasource doesn't have a ton of unmatched tracts, implying it
# has moved to 2020 tracts
assert len(df[df.MERGE == "right_only"]) < UNMATCHED_TRACK_THRESHOLD
df = df[df.MERGE == "both"]
# Compare every column for equality, using close equality for numerics and
# `equals` equality for non-numeric columns
for final_column, data_source_column in zip(
data_source_columns, final_columns
):
error_message = (
f"Column {final_column} not equal "
f"between {data_source_name} and final score"
)
if df[final_column].dtype in [
np.dtype(object),
np.dtype(bool),
np.dtype(str),
]:
assert df[final_column].equals(
df[data_source_column]
), error_message
else:
assert np.allclose(
df[final_column],
df[data_source_column],
equal_nan=True,
), error_message
def test_output_tracts(final_score_df, national_tract_df):
df = final_score_df.merge(
national_tract_df,
on=GEOID_TRACT_FIELD,
how="outer",
indicator="MERGE",
)
counts = df.value_counts("MERGE")
assert counts.loc["left_only"] == 0
assert counts.loc["right_only"] == 0
def test_all_tracts_have_scores(final_score_df):
assert not final_score_df[field_names.SCORE_N_COMMUNITIES].isna().any()

View file

@ -0,0 +1,221 @@
# flake8: noqa: W0613,W0611,F811
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import numpy as np
import pytest
from data_pipeline.config import settings
from data_pipeline.etl.score import constants
from data_pipeline.score import field_names
from data_pipeline.etl.score.constants import (
TILES_SCORE_COLUMNS,
THRESHOLD_COUNT_TO_SHOW_FIELD_NAME,
USER_INTERFACE_EXPERIENCE_FIELD_NAME,
)
from .fixtures import final_score_df # pylint: disable=unused-import
pytestmark = pytest.mark.smoketest
@pytest.fixture
def tiles_df(scope="session"):
return pd.read_csv(
settings.APP_ROOT / "data" / "score" / "csv" / "tiles" / "usa.csv",
dtype={"GTF": str},
low_memory=False,
)
PERCENTILE_FIELDS = [
"DF_PFS",
"AF_PFS",
"HDF_PFS",
"DSF_PFS",
"EBF_PFS",
"EALR_PFS",
"EBLR_PFS",
"EPLR_PFS",
"HBF_PFS",
"LLEF_PFS",
"LIF_PFS",
"LMI_PFS",
"MHVF_PFS",
"PM25F_PFS",
"P100_PFS",
"P200_I_PFS",
"P200_PFS",
"LPF_PFS",
"KP_PFS",
"NPL_PFS",
"RMP_PFS",
"TSDF_PFS",
"TF_PFS",
"UF_PFS",
"WF_PFS",
"UST_PFS",
]
def test_percentiles(tiles_df):
for col in PERCENTILE_FIELDS:
assert tiles_df[col].min() >= 0, f"Negative percentile exists for {col}"
assert (
tiles_df[col].max() <= 1
), f"Percentile over 100th exists for {col}"
assert (tiles_df[col].median() >= 0.4) & (
tiles_df[col].median() <= 0.6
), f"Percentile distribution for {col} is decidedly not uniform"
return True
def test_count_of_fips_codes(tiles_df, final_score_df):
final_score_state_count = (
final_score_df[field_names.GEOID_TRACT_FIELD].str[:2].nunique()
)
assert (
tiles_df["GTF"].str[:2].nunique() == final_score_state_count
), "Some states are missing from tiles"
pfs_columns = tiles_df.filter(like="PFS").columns.to_list()
assert (
tiles_df.dropna(how="all", subset=pfs_columns)["GTF"].str[:2].nunique()
== 56
), "Some states do not have any percentile data"
def test_column_presence(tiles_df):
expected_column_names = set(TILES_SCORE_COLUMNS.values()) | {
THRESHOLD_COUNT_TO_SHOW_FIELD_NAME,
USER_INTERFACE_EXPERIENCE_FIELD_NAME,
}
actual_column_names = set(tiles_df.columns)
extra_columns = actual_column_names - expected_column_names
missing_columns = expected_column_names - expected_column_names
assert not (
extra_columns
), f"tiles/usa.csv has columns not specified in TILE_SCORE_COLUMNS: {extra_columns}"
assert not (
missing_columns
), f"tiles/usa.csv is missing columns from TILE_SCORE_COLUMNS: {missing_columns}"
def test_tract_equality(tiles_df, final_score_df):
assert tiles_df.shape[0] == final_score_df.shape[0]
@dataclass
class ColumnValueComparison:
final_score_column: pd.Series
tiles_column: pd.Series
col_name: str
@property
def _is_tiles_column_fake_bool(self) -> bool:
if self.tiles_column.dtype == np.dtype("float64"):
fake_bool = {1.0, 0.0, None}
# Replace the nans in the column values with None for
# so we can just use issubset below
col_values = set(
not np.isnan(val) and val or None
for val in self.tiles_column.value_counts(dropna=False).index
)
return len(col_values) <= 3 and col_values.issubset(fake_bool)
return False
@property
def _is_dtype_ok(self) -> bool:
if self.final_score_column.dtype == self.tiles_column.dtype:
return True
if (
self.final_score_column.dtype == np.dtype("O")
and self.tiles_column.dtype == np.dtype("float64")
and self._is_tiles_column_fake_bool
):
return True
return False
def __post_init__(self):
self._is_value_ok = False
if self._is_dtype_ok:
if self._is_tiles_column_fake_bool:
# Cast to actual bool for useful comparison
self.tiles_column = self.tiles_column.apply(
lambda val: bool(val) if not np.isnan(val) else np.nan
)
if self.tiles_column.dtype == np.dtype("float64"):
self._is_value_ok = np.allclose(
self.final_score_column,
self.tiles_column,
atol=float(f"1e-{constants.TILES_ROUND_NUM_DECIMALS}"),
equal_nan=True,
)
else:
self._is_value_ok = self.final_score_column.equals(
self.tiles_column
)
def __bool__(self) -> bool:
return self._is_dtype_ok and bool(self._is_value_ok)
@property
def error_message(self) -> Optional[str]:
if not self._is_dtype_ok:
return (
f"Column {self.col_name} dtype mismatch: "
f"score_df: {self.final_score_column.dtype}, "
f"tile_df: {self.tiles_column.dtype}"
)
if not self._is_value_ok:
return f"Column {self.col_name} value mismatch"
return None
def test_for_column_fidelitiy_from_score(tiles_df, final_score_df):
# Verify the following:
# * Shape and tracts match between score csv and tile csv
# * If you rename score CSV columns, you are able to make the tile csv
# * The dtypes and values of every renamed score column is "equal" to
# every tile column
# * Because tiles use rounded floats, we use close with a tolerance
assert (
set(TILES_SCORE_COLUMNS.values()) - set(tiles_df.columns) == set()
), "Some TILES_SCORE_COLUMNS are missing from the tiles dataframe"
# Keep only the tiles score columns in the final score data
final_score_df = final_score_df.rename(columns=TILES_SCORE_COLUMNS).drop(
final_score_df.columns.difference(TILES_SCORE_COLUMNS.values()),
axis=1,
errors="ignore",
)
# Drop the UI-specific fields from the tiles dataframe
tiles_df = tiles_df.drop(
columns=[
"SF", # State field, added at geoscore
"CF", # County field, added at geoscore,
constants.THRESHOLD_COUNT_TO_SHOW_FIELD_NAME,
constants.USER_INTERFACE_EXPERIENCE_FIELD_NAME,
]
)
errors = []
# Are the dataframes the same shape truly
assert tiles_df.shape == final_score_df.shape
assert tiles_df["GTF"].equals(final_score_df["GTF"])
assert sorted(tiles_df.columns) == sorted(final_score_df.columns)
# Are all the dtypes and values the same?
comparisons = []
for col_name in final_score_df.columns:
value_comparison = ColumnValueComparison(
final_score_df[col_name], tiles_df[col_name], col_name
)
comparisons.append(value_comparison)
errors = [comp for comp in comparisons if not comp]
error_message = "\n".join(error.error_message for error in errors)
assert not errors, error_message
def test_for_state_names(tiles_df):
states = tiles_df["SF"].value_counts(dropna=False).index
assert np.nan not in states
assert states.all()

File diff suppressed because it is too large Load diff