mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-29 04:01:17 -07:00
parent
f5f7a254af
commit
2b35a8937a
2 changed files with 9 additions and 13 deletions
|
@ -17,6 +17,9 @@ from . import constants
|
||||||
|
|
||||||
logger = get_module_logger(__name__)
|
logger = get_module_logger(__name__)
|
||||||
|
|
||||||
|
# Define the DAC variable
|
||||||
|
DISADVANTAGED_COMMUNITIES_FIELD = field_names.SCORE_M_COMMUNITIES
|
||||||
|
|
||||||
|
|
||||||
class PostScoreETL(ExtractTransformLoad):
|
class PostScoreETL(ExtractTransformLoad):
|
||||||
"""
|
"""
|
||||||
|
@ -184,17 +187,9 @@ class PostScoreETL(ExtractTransformLoad):
|
||||||
merged_df["Total population"].fillna(0.0).astype(int)
|
merged_df["Total population"].fillna(0.0).astype(int)
|
||||||
)
|
)
|
||||||
|
|
||||||
# list the null score tracts
|
de_duplicated_df = merged_df.dropna(
|
||||||
null_tract_df = merged_df[
|
subset=[DISADVANTAGED_COMMUNITIES_FIELD]
|
||||||
merged_df[field_names.SCORE_L_COMMUNITIES].isnull()
|
)
|
||||||
]
|
|
||||||
|
|
||||||
# subtract data sets
|
|
||||||
# this follows the XOR pattern outlined here:
|
|
||||||
# https://stackoverflow.com/a/37313953
|
|
||||||
de_duplicated_df = pd.concat(
|
|
||||||
[merged_df, null_tract_df, null_tract_df]
|
|
||||||
).drop_duplicates(keep=False)
|
|
||||||
|
|
||||||
# set the score to the new df
|
# set the score to the new df
|
||||||
return de_duplicated_df
|
return de_duplicated_df
|
||||||
|
@ -333,7 +328,7 @@ class PostScoreETL(ExtractTransformLoad):
|
||||||
# Rename score column
|
# Rename score column
|
||||||
downloadable_df_copy = downloadable_df.rename(
|
downloadable_df_copy = downloadable_df.rename(
|
||||||
columns={
|
columns={
|
||||||
field_names.SCORE_M_COMMUNITIES: "Identified as disadvantaged (v0.1)"
|
DISADVANTAGED_COMMUNITIES_FIELD: "Identified as disadvantaged (v0.1)"
|
||||||
},
|
},
|
||||||
inplace=False,
|
inplace=False,
|
||||||
)
|
)
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
from typing import Tuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
@ -27,7 +28,7 @@ class ScoreM(Score):
|
||||||
column_from_decennial_census: str,
|
column_from_decennial_census: str,
|
||||||
combined_column_name: str,
|
combined_column_name: str,
|
||||||
threshold_cutoff_for_island_areas: float,
|
threshold_cutoff_for_island_areas: float,
|
||||||
) -> (pd.DataFrame, str):
|
) -> Tuple[pd.DataFrame, str]:
|
||||||
"""Steps to set thresholds for island areas.
|
"""Steps to set thresholds for island areas.
|
||||||
|
|
||||||
This function is fairly logically complicated. It takes the following steps:
|
This function is fairly logically complicated. It takes the following steps:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue