mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-09-14 19:48:18 -07:00
Add EJSCREEN Areas of Concern (#843)
* Adding ej screen areas of concern * Uses it where user has local files, but not otherwise Co-authored-by: VincentLaUSDS <vincent.la@omb.eop.gov>
This commit is contained in:
parent
1795be6cb4
commit
1d541be447
10 changed files with 2546 additions and 18 deletions
|
@ -56,7 +56,9 @@ POVERTY_LESS_THAN_100_FPL_PERCENTILE_FIELD = (
|
|||
"Percent of individuals < 100% Federal Poverty Line (percentile)"
|
||||
)
|
||||
MEDIAN_INCOME_PERCENT_AMI_FIELD = "Median household income (% of AMI)"
|
||||
MEDIAN_INCOME_PERCENT_AMI_PERCENTILE_FIELD = "Median household income (% of AMI) (percentile)"
|
||||
MEDIAN_INCOME_PERCENT_AMI_PERCENTILE_FIELD = (
|
||||
"Median household income (% of AMI) (percentile)"
|
||||
)
|
||||
STATE_MEDIAN_INCOME_FIELD = (
|
||||
"Median household income (State; 2019 inflation-adjusted dollars)"
|
||||
)
|
||||
|
@ -153,3 +155,42 @@ OVER_64_FIELD = "Individuals over 64 years old"
|
|||
|
||||
# Urban Rural Map
|
||||
URBAN_HERUISTIC_FIELD = "Urban Heuristic Flag"
|
||||
|
||||
|
||||
# EJSCREEN Areas of Concern
|
||||
EJSCREEN_AREAS_OF_CONCERN_NATIONAL_70TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, National, 70th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_NATIONAL_75TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, National, 75th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_NATIONAL_80TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, National, 80th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_NATIONAL_85TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, National, 85th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_NATIONAL_90TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, National, 90th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_NATIONAL_95TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, National, 95th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_STATE_70TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, State, 70th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_STATE_75TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, State, 75th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_STATE_80TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, State, 80th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_STATE_85TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, State, 85th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_STATE_90TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, State, 90th percentile (communities)"
|
||||
)
|
||||
EJSCREEN_AREAS_OF_CONCERN_STATE_95TH_PERCENTILE_COMMUNITIES_FIELD_NAME = (
|
||||
"EJSCREEN Areas of Concern, State, 95th percentile (communities)"
|
||||
)
|
||||
|
|
|
@ -10,7 +10,7 @@ logger = get_module_logger(__name__)
|
|||
|
||||
class ScoreC(Score):
|
||||
def __init__(self, df: pd.DataFrame) -> None:
|
||||
Bucket = namedtuple('Bucket', ['name', 'fields'])
|
||||
Bucket = namedtuple(typename="Bucket", field_names=["name", "fields"])
|
||||
|
||||
self.BUCKET_SOCIOECONOMIC = Bucket(
|
||||
field_names.C_SOCIOECONOMIC,
|
||||
|
@ -20,15 +20,15 @@ class ScoreC(Score):
|
|||
field_names.HIGH_SCHOOL_ED_FIELD,
|
||||
field_names.UNEMPLOYMENT_FIELD,
|
||||
field_names.HT_INDEX_FIELD,
|
||||
]
|
||||
)
|
||||
],
|
||||
)
|
||||
self.BUCKET_SENSITIVE = Bucket(
|
||||
field_names.C_SENSITIVE,
|
||||
[
|
||||
field_names.UNDER_5_FIELD,
|
||||
field_names.OVER_64_FIELD,
|
||||
field_names.LINGUISTIC_ISO_FIELD,
|
||||
]
|
||||
],
|
||||
)
|
||||
self.BUCKET_ENVIRONMENTAL = Bucket(
|
||||
field_names.C_ENVIRONMENTAL,
|
||||
|
@ -38,7 +38,7 @@ class ScoreC(Score):
|
|||
field_names.NPL_FIELD,
|
||||
field_names.WASTEWATER_FIELD,
|
||||
field_names.LEAD_PAINT_FIELD,
|
||||
]
|
||||
],
|
||||
)
|
||||
self.BUCKET_EXPOSURES = Bucket(
|
||||
field_names.C_EXPOSURES,
|
||||
|
@ -63,7 +63,7 @@ class ScoreC(Score):
|
|||
def add_columns(self) -> pd.DataFrame:
|
||||
logger.info("Adding Score C")
|
||||
# Average all the percentile values in each bucket into a single score for each of the four buckets.
|
||||
|
||||
|
||||
# TODO just use the percentile fields in the list instead
|
||||
for bucket in self.BUCKETS:
|
||||
fields_to_average = []
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue