mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-27 20:01:16 -07:00
Issue 844: Add island areas to Definition L (#957)
This ended up being a pretty large task. Here's what this PR does: 1. Pulls in Vincent's data from island areas into the score ETL. This is from the 2010 decennial census, the last census of any kind in the island areas. 2. Grabs a few new fields from 2010 island areas decennial census. 3. Calculates area median income for island areas. 4. Stops using EJSCREEN as the source of our high school education data and directly pulls that from census (this was related to this project so I went ahead and fixed it). 5. Grabs a bunch of data from the 2010 ACS in the states/Puerto Rico/DC, so that we can create percentiles comparing apples-to-apples (ish) from 2010 island areas decennial census data to 2010 ACS data. This required creating a new class because all the ACS fields are different between 2010 and 2019, so it wasn't as simple as looping over a year parameter. 6. Creates a combined population field of island areas and mainland so we can use those stats in our comparison tool, and updates the comparison tool accordingly.
This commit is contained in:
parent
8cb9d197df
commit
1d101c93d2
15 changed files with 882 additions and 153 deletions
|
@ -27,12 +27,21 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
# https://api.census.gov/data/2010/dec/gu/variables.html
|
||||
# https://api.census.gov/data/2010/dec/mp/variables.html
|
||||
# https://api.census.gov/data/2010/dec/vi/variables.html
|
||||
|
||||
# Total population field is the same in all island areas
|
||||
self.TOTAL_POP_FIELD = self.TOTAL_POP_VI_FIELD = "P001001"
|
||||
self.TOTAL_POP_FIELD_NAME = "Total population in 2009"
|
||||
|
||||
self.MEDIAN_INCOME_FIELD = "PBG049001"
|
||||
self.MEDIAN_INCOME_VI_FIELD = "PBG047001"
|
||||
self.MEDIAN_INCOME_FIELD_NAME = (
|
||||
"MEDIAN HOUSEHOLD INCOME IN 2009 (DOLLARS)"
|
||||
self.MEDIAN_INCOME_FIELD_NAME = "Median household income in 2009 ($)"
|
||||
self.AREA_MEDIAN_INCOME_FIELD_NAME = (
|
||||
"Median household income as a percent of "
|
||||
"territory median income in 2009"
|
||||
)
|
||||
|
||||
self.TERRITORY_MEDIAN_INCOME_FIELD = "Territory Median Income"
|
||||
|
||||
self.TOTAL_HOUSEHOLD_RATIO_INCOME_TO_POVERTY_LEVEL_FIELD = "PBG083001"
|
||||
self.TOTAL_HOUSEHOLD_RATIO_INCOME_TO_POVERTY_LEVEL_VI_FIELD = (
|
||||
"PBG077001"
|
||||
|
@ -48,7 +57,39 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
)
|
||||
|
||||
self.PERCENTAGE_HOUSEHOLDS_BELOW_200_PERC_POVERTY_LEVEL_FIELD_NAME = (
|
||||
"PERCENTAGE_HOUSEHOLDS_BELOW_200_PERC_POVERTY_LEVEL"
|
||||
"Percentage households below 200% of federal poverty line in 2009"
|
||||
)
|
||||
|
||||
# We will combine three fields to get households < 100% FPL.
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_ONE = (
|
||||
"PBG083002" # Total!!Under .50
|
||||
)
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_TWO = (
|
||||
"PBG083003" # Total!!.50 to .74
|
||||
)
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_THREE = (
|
||||
"PBG083004" # Total!!.75 to .99
|
||||
)
|
||||
|
||||
# Same fields, for Virgin Islands.
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_ONE = (
|
||||
"PBG077002" # Total!!Under .50
|
||||
)
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_TWO = (
|
||||
"PBG077003" # Total!!.50 to .74
|
||||
)
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_THREE = (
|
||||
"PBG077004" # Total!!.75 to .99
|
||||
)
|
||||
|
||||
self.HOUSEHOLD_OVER_200_PERC_POVERTY_LEVEL_FIELD = "PBG083010"
|
||||
self.HOUSEHOLD_OVER_200_PERC_POVERTY_LEVEL_VI_FIELD = "PBG077010"
|
||||
self.HOUSEHOLD_OVER_200_PERC_POVERTY_LEVEL_FIELD_NAME = (
|
||||
"Total!!2.00 and over; RATIO OF INCOME TO POVERTY LEVEL IN 2009"
|
||||
)
|
||||
|
||||
self.PERCENTAGE_HOUSEHOLDS_BELOW_100_PERC_POVERTY_LEVEL_FIELD_NAME = (
|
||||
"Percentage households below 100% of federal poverty line in 2009"
|
||||
)
|
||||
|
||||
# High School Education Fields
|
||||
|
@ -70,9 +111,37 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
"SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER"
|
||||
)
|
||||
|
||||
self.PERCENTAGE_HIGH_SCHOOL_ED_FIELD_NAME = (
|
||||
"PERCENTAGE_HIGH_SCHOOL_ED_FIELD_NAME"
|
||||
self.PERCENTAGE_HIGH_SCHOOL_ED_FIELD_NAME = "Percent individuals age 25 or over with less than high school degree in 2009"
|
||||
|
||||
# Employment fields
|
||||
self.EMPLOYMENT_MALE_IN_LABOR_FORCE_FIELD = (
|
||||
"PBG038003" # Total!!Male!!In labor force
|
||||
)
|
||||
self.EMPLOYMENT_MALE_UNEMPLOYED_FIELD = (
|
||||
"PBG038007" # Total!!Male!!In labor force!!Civilian!!Unemployed
|
||||
)
|
||||
self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_FIELD = (
|
||||
"PBG038010" # Total!!Female!!In labor force
|
||||
)
|
||||
self.EMPLOYMENT_FEMALE_UNEMPLOYED_FIELD = (
|
||||
"PBG038014" # Total!!Female!!In labor force!!Civilian!!Unemployed
|
||||
)
|
||||
|
||||
# Same fields, Virgin Islands.
|
||||
self.EMPLOYMENT_MALE_IN_LABOR_FORCE_VI_FIELD = (
|
||||
"PBG036003" # Total!!Male!!In labor force
|
||||
)
|
||||
self.EMPLOYMENT_MALE_UNEMPLOYED_VI_FIELD = (
|
||||
"PBG036007" # Total!!Male!!In labor force!!Civilian!!Unemployed
|
||||
)
|
||||
self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_VI_FIELD = (
|
||||
"PBG036010" # Total!!Female!!In labor force
|
||||
)
|
||||
self.EMPLOYMENT_FEMALE_UNEMPLOYED_VI_FIELD = (
|
||||
"PBG036014" # Total!!Female!!In labor force!!Civilian!!Unemployed
|
||||
)
|
||||
|
||||
self.UNEMPLOYMENT_FIELD_NAME = "Unemployed civilians (percent) in 2009"
|
||||
|
||||
var_list = [
|
||||
self.MEDIAN_INCOME_FIELD,
|
||||
|
@ -81,6 +150,14 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
self.TOTAL_POPULATION_FIELD,
|
||||
self.MALE_HIGH_SCHOOL_ED_FIELD,
|
||||
self.FEMALE_HIGH_SCHOOL_ED_FIELD,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_ONE,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_TWO,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_THREE,
|
||||
self.EMPLOYMENT_MALE_IN_LABOR_FORCE_FIELD,
|
||||
self.EMPLOYMENT_MALE_UNEMPLOYED_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_UNEMPLOYED_FIELD,
|
||||
self.TOTAL_POP_FIELD,
|
||||
]
|
||||
var_list = ",".join(var_list)
|
||||
|
||||
|
@ -91,6 +168,14 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
self.TOTAL_POPULATION_VI_FIELD,
|
||||
self.MALE_HIGH_SCHOOL_ED_VI_FIELD,
|
||||
self.FEMALE_HIGH_SCHOOL_ED_VI_FIELD,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_ONE,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_TWO,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_THREE,
|
||||
self.EMPLOYMENT_MALE_IN_LABOR_FORCE_VI_FIELD,
|
||||
self.EMPLOYMENT_MALE_UNEMPLOYED_VI_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_VI_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_UNEMPLOYED_VI_FIELD,
|
||||
self.TOTAL_POP_VI_FIELD,
|
||||
]
|
||||
var_list_vi = ",".join(var_list_vi)
|
||||
|
||||
|
@ -107,6 +192,20 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
self.MALE_HIGH_SCHOOL_ED_VI_FIELD: self.MALE_HIGH_SCHOOL_ED_FIELD_NAME,
|
||||
self.FEMALE_HIGH_SCHOOL_ED_FIELD: self.FEMALE_HIGH_SCHOOL_ED_FIELD_NAME,
|
||||
self.FEMALE_HIGH_SCHOOL_ED_VI_FIELD: self.FEMALE_HIGH_SCHOOL_ED_FIELD_NAME,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_ONE: self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_ONE,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_ONE: self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_ONE,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_TWO: self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_TWO,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_TWO: self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_TWO,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_THREE: self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_THREE,
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_VI_PART_THREE: self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_THREE,
|
||||
self.EMPLOYMENT_MALE_IN_LABOR_FORCE_VI_FIELD: self.EMPLOYMENT_MALE_IN_LABOR_FORCE_FIELD,
|
||||
self.EMPLOYMENT_MALE_UNEMPLOYED_VI_FIELD: self.EMPLOYMENT_MALE_UNEMPLOYED_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_VI_FIELD: self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_UNEMPLOYED_VI_FIELD: self.EMPLOYMENT_FEMALE_UNEMPLOYED_FIELD,
|
||||
self.EMPLOYMENT_MALE_IN_LABOR_FORCE_FIELD: self.EMPLOYMENT_MALE_IN_LABOR_FORCE_FIELD,
|
||||
self.EMPLOYMENT_MALE_UNEMPLOYED_FIELD: self.EMPLOYMENT_MALE_UNEMPLOYED_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_FIELD: self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_FIELD,
|
||||
self.EMPLOYMENT_FEMALE_UNEMPLOYED_FIELD: self.EMPLOYMENT_FEMALE_UNEMPLOYED_FIELD,
|
||||
}
|
||||
|
||||
# To do: Ask Census Slack Group about whether you need to hardcode the county fips
|
||||
|
@ -117,24 +216,30 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
"fips": "60",
|
||||
"county_fips": ["010", "020", "030", "040", "050"],
|
||||
"var_list": var_list,
|
||||
# Note: we hardcode the median income for each territory in this dict,
|
||||
# because that data is hard to programmatically access.
|
||||
self.TERRITORY_MEDIAN_INCOME_FIELD: 23892,
|
||||
},
|
||||
{
|
||||
"state_abbreviation": "gu",
|
||||
"fips": "66",
|
||||
"county_fips": ["010"],
|
||||
"var_list": var_list,
|
||||
self.TERRITORY_MEDIAN_INCOME_FIELD: 48274,
|
||||
},
|
||||
{
|
||||
"state_abbreviation": "mp",
|
||||
"fips": "69",
|
||||
"county_fips": ["085", "100", "110", "120"],
|
||||
"var_list": var_list,
|
||||
self.TERRITORY_MEDIAN_INCOME_FIELD: 19958,
|
||||
},
|
||||
{
|
||||
"state_abbreviation": "vi",
|
||||
"fips": "78",
|
||||
"county_fips": ["010", "020", "030"],
|
||||
"var_list": var_list_vi,
|
||||
self.TERRITORY_MEDIAN_INCOME_FIELD: 37254,
|
||||
},
|
||||
]
|
||||
|
||||
|
@ -198,6 +303,11 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
# Combine the dfs after renaming
|
||||
self.df_all = pd.concat([self.df, self.df_vi])
|
||||
|
||||
# Rename total population:
|
||||
self.df_all[self.TOTAL_POP_FIELD_NAME] = self.df_all[
|
||||
self.TOTAL_POP_FIELD
|
||||
]
|
||||
|
||||
# Percentage of households below 200% which is
|
||||
# [PBG083001 (total) - PBG083010 (num households over 200%)] / PBG083001 (total)
|
||||
self.df_all[
|
||||
|
@ -211,6 +321,25 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
self.TOTAL_HOUSEHOLD_RATIO_INCOME_TO_POVERTY_LEVEL_FIELD_NAME
|
||||
]
|
||||
|
||||
# Percentage of households below 100% FPL
|
||||
# which we get by adding `Total!!Under .50`, `Total!!.50 to .74`, ` Total!!.75 to .99`,
|
||||
# and then dividing by PBG083001 (total)
|
||||
self.df_all[
|
||||
self.PERCENTAGE_HOUSEHOLDS_BELOW_100_PERC_POVERTY_LEVEL_FIELD_NAME
|
||||
] = (
|
||||
self.df_all[
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_ONE
|
||||
]
|
||||
+ self.df_all[
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_TWO
|
||||
]
|
||||
+ self.df_all[
|
||||
self.HOUSEHOLD_UNDER_100_PERC_POVERTY_LEVEL_FIELD_PART_THREE
|
||||
]
|
||||
) / self.df_all[
|
||||
self.TOTAL_HOUSEHOLD_RATIO_INCOME_TO_POVERTY_LEVEL_FIELD_NAME
|
||||
]
|
||||
|
||||
# Percentage High School Achievement is
|
||||
# Percentage = (Male + Female) / (Total)
|
||||
self.df_all[self.PERCENTAGE_HIGH_SCHOOL_ED_FIELD_NAME] = (
|
||||
|
@ -218,6 +347,28 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
+ self.df_all[self.FEMALE_HIGH_SCHOOL_ED_FIELD_NAME]
|
||||
) / self.df_all[self.TOTAL_POPULATION_FIELD_NAME]
|
||||
|
||||
# Calculate employment.
|
||||
self.df_all[self.UNEMPLOYMENT_FIELD_NAME] = (
|
||||
self.df_all[self.EMPLOYMENT_MALE_UNEMPLOYED_FIELD]
|
||||
+ self.df_all[self.EMPLOYMENT_FEMALE_UNEMPLOYED_FIELD]
|
||||
) / (
|
||||
self.df_all[self.EMPLOYMENT_MALE_IN_LABOR_FORCE_FIELD]
|
||||
+ self.df_all[self.EMPLOYMENT_FEMALE_IN_LABOR_FORCE_FIELD]
|
||||
)
|
||||
|
||||
# Calculate area median income
|
||||
median_income_df = pd.DataFrame(self.ISLAND_TERRITORIES)
|
||||
median_income_df = median_income_df[
|
||||
["fips", self.TERRITORY_MEDIAN_INCOME_FIELD]
|
||||
]
|
||||
self.df_all = self.df_all.merge(
|
||||
right=median_income_df, left_on="state", right_on="fips", how="left"
|
||||
)
|
||||
self.df_all[self.AREA_MEDIAN_INCOME_FIELD_NAME] = (
|
||||
self.df_all[self.MEDIAN_INCOME_FIELD_NAME]
|
||||
/ self.df_all[self.TERRITORY_MEDIAN_INCOME_FIELD]
|
||||
)
|
||||
|
||||
# Creating Geo ID (Census Block Group) Field Name
|
||||
self.df_all[self.GEOID_TRACT_FIELD_NAME] = (
|
||||
self.df_all["state"] + self.df_all["county"] + self.df_all["tract"]
|
||||
|
@ -238,9 +389,14 @@ class CensusDecennialETL(ExtractTransformLoad):
|
|||
|
||||
columns_to_include = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.TOTAL_POP_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_FIELD_NAME,
|
||||
self.TERRITORY_MEDIAN_INCOME_FIELD,
|
||||
self.AREA_MEDIAN_INCOME_FIELD_NAME,
|
||||
self.PERCENTAGE_HOUSEHOLDS_BELOW_100_PERC_POVERTY_LEVEL_FIELD_NAME,
|
||||
self.PERCENTAGE_HOUSEHOLDS_BELOW_200_PERC_POVERTY_LEVEL_FIELD_NAME,
|
||||
self.PERCENTAGE_HIGH_SCHOOL_ED_FIELD_NAME,
|
||||
self.UNEMPLOYMENT_FIELD_NAME,
|
||||
]
|
||||
|
||||
self.df_all[columns_to_include].to_csv(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue