mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-29 05:41:16 -07:00
Issue 844: Add island areas to Definition L (#957)
This ended up being a pretty large task. Here's what this PR does: 1. Pulls in Vincent's data from island areas into the score ETL. This is from the 2010 decennial census, the last census of any kind in the island areas. 2. Grabs a few new fields from 2010 island areas decennial census. 3. Calculates area median income for island areas. 4. Stops using EJSCREEN as the source of our high school education data and directly pulls that from census (this was related to this project so I went ahead and fixed it). 5. Grabs a bunch of data from the 2010 ACS in the states/Puerto Rico/DC, so that we can create percentiles comparing apples-to-apples (ish) from 2010 island areas decennial census data to 2010 ACS data. This required creating a new class because all the ACS fields are different between 2010 and 2019, so it wasn't as simple as looping over a year parameter. 6. Creates a combined population field of island areas and mainland so we can use those stats in our comparison tool, and updates the comparison tool accordingly.
This commit is contained in:
parent
8cb9d197df
commit
1d101c93d2
15 changed files with 882 additions and 153 deletions
|
@ -1,8 +1,7 @@
|
|||
import pandas as pd
|
||||
import censusdata
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
|
||||
from data_pipeline.etl.sources.census_acs.etl_utils import retrieve_census_acs_data
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
@ -14,7 +13,15 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.OUTPUT_PATH = (
|
||||
self.DATA_PATH / "dataset" / f"census_acs_{self.ACS_YEAR}"
|
||||
)
|
||||
|
||||
self.TOTAL_UNEMPLOYED_FIELD = "B23025_005E"
|
||||
self.TOTAL_IN_LABOR_FORCE = "B23025_003E"
|
||||
self.EMPLOYMENT_FIELDS = [
|
||||
self.TOTAL_UNEMPLOYED_FIELD,
|
||||
self.TOTAL_IN_LABOR_FORCE,
|
||||
]
|
||||
self.UNEMPLOYED_FIELD_NAME = "Unemployed civilians (percent)"
|
||||
|
||||
self.LINGUISTIC_ISOLATION_FIELD_NAME = "Linguistic isolation (percent)"
|
||||
self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME = (
|
||||
"Linguistic isolation (total)"
|
||||
|
@ -55,59 +62,89 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
"Median value ($) of owner-occupied housing units"
|
||||
)
|
||||
|
||||
# Educational attainment figures
|
||||
self.EDUCATION_POPULATION_OVER_25 = "B15003_001E" # Estimate!!Total
|
||||
self.EDUCATION_NO_SCHOOLING = (
|
||||
"B15003_002E" # Estimate!!Total!!No schooling completed
|
||||
)
|
||||
self.EDUCATION_NURSERY = (
|
||||
"B15003_003E" # Estimate!!Total!!Nursery school
|
||||
)
|
||||
self.EDUCATION_KINDERGARTEN = (
|
||||
"B15003_004E" # Estimate!!Total!!Kindergarten
|
||||
)
|
||||
self.EDUCATION_FIRST = "B15003_005E" # Estimate!!Total!!1st grade
|
||||
self.EDUCATION_SECOND = "B15003_006E" # Estimate!!Total!!2nd grade
|
||||
self.EDUCATION_THIRD = "B15003_007E" # Estimate!!Total!!3rd grade
|
||||
self.EDUCATION_FOURTH = "B15003_008E" # Estimate!!Total!!4th grade
|
||||
self.EDUCATION_FIFTH = "B15003_009E" # Estimate!!Total!!5th grade
|
||||
self.EDUCATION_SIXTH = "B15003_010E" # Estimate!!Total!!6th grade
|
||||
self.EDUCATION_SEVENTH = "B15003_011E" # Estimate!!Total!!7th grade
|
||||
self.EDUCATION_EIGHTH = "B15003_012E" # Estimate!!Total!!8th grade
|
||||
self.EDUCATION_NINTH = "B15003_013E" # Estimate!!Total!!9th grade
|
||||
self.EDUCATION_TENTH = "B15003_014E" # Estimate!!Total!!10th grade
|
||||
self.EDUCATION_ELEVENTH = "B15003_015E" # Estimate!!Total!!11th grade
|
||||
self.EDUCATION_TWELFTH_NO_DIPLOMA = (
|
||||
"B15003_016E" # Estimate!!Total!!12th grade, no diploma
|
||||
)
|
||||
|
||||
self.EDUCATIONAL_FIELDS = [
|
||||
self.EDUCATION_POPULATION_OVER_25,
|
||||
self.EDUCATION_NO_SCHOOLING,
|
||||
self.EDUCATION_NURSERY,
|
||||
self.EDUCATION_KINDERGARTEN,
|
||||
self.EDUCATION_FIRST,
|
||||
self.EDUCATION_SECOND,
|
||||
self.EDUCATION_THIRD,
|
||||
self.EDUCATION_FOURTH,
|
||||
self.EDUCATION_FIFTH,
|
||||
self.EDUCATION_SIXTH,
|
||||
self.EDUCATION_SEVENTH,
|
||||
self.EDUCATION_EIGHTH,
|
||||
self.EDUCATION_NINTH,
|
||||
self.EDUCATION_TENTH,
|
||||
self.EDUCATION_ELEVENTH,
|
||||
self.EDUCATION_TWELFTH_NO_DIPLOMA,
|
||||
]
|
||||
|
||||
self.HIGH_SCHOOL_ED_RAW_COUNT_FIELD = (
|
||||
"Individuals age 25 or over with less than high school degree"
|
||||
)
|
||||
self.HIGH_SCHOOL_ED_FIELD = "Percent individuals age 25 or over with less than high school degree"
|
||||
|
||||
self.STATE_GEOID_FIELD_NAME = "GEOID2"
|
||||
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def _fips_from_censusdata_censusgeo(
|
||||
self, censusgeo: censusdata.censusgeo
|
||||
) -> str:
|
||||
"""Create a FIPS code from the proprietary censusgeo index."""
|
||||
fips = "".join([value for (key, value) in censusgeo.params()])
|
||||
return fips
|
||||
|
||||
def extract(self) -> None:
|
||||
dfs = []
|
||||
for fips in get_state_fips_codes(self.DATA_PATH):
|
||||
logger.info(
|
||||
f"Downloading data for state/territory with FIPS code {fips}"
|
||||
)
|
||||
# Define the variables to retrieve
|
||||
variables = (
|
||||
[
|
||||
# Income field
|
||||
self.MEDIAN_INCOME_FIELD,
|
||||
# House value
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD,
|
||||
]
|
||||
+ self.EMPLOYMENT_FIELDS
|
||||
+ self.LINGUISTIC_ISOLATION_FIELDS
|
||||
+ self.POVERTY_FIELDS
|
||||
+ self.EDUCATIONAL_FIELDS
|
||||
)
|
||||
|
||||
try:
|
||||
response = censusdata.download(
|
||||
src="acs5",
|
||||
year=self.ACS_YEAR,
|
||||
geo=censusdata.censusgeo(
|
||||
[("state", fips), ("county", "*"), ("tract", "*")]
|
||||
),
|
||||
var=[
|
||||
# Emploment fields
|
||||
"B23025_005E",
|
||||
"B23025_003E",
|
||||
# Income field
|
||||
self.MEDIAN_INCOME_FIELD,
|
||||
# House value
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD,
|
||||
]
|
||||
+ self.LINGUISTIC_ISOLATION_FIELDS
|
||||
+ self.POVERTY_FIELDS,
|
||||
)
|
||||
dfs.append(response)
|
||||
except ValueError:
|
||||
logger.error(
|
||||
f"Could not download data for state/territory with FIPS code {fips}"
|
||||
)
|
||||
|
||||
self.df = pd.concat(dfs)
|
||||
|
||||
self.df[self.GEOID_TRACT_FIELD_NAME] = self.df.index.to_series().apply(
|
||||
func=self._fips_from_censusdata_censusgeo
|
||||
self.df = retrieve_census_acs_data(
|
||||
acs_year=self.ACS_YEAR,
|
||||
variables=variables,
|
||||
tract_output_field_name=self.GEOID_TRACT_FIELD_NAME,
|
||||
data_path_for_fips_codes=self.DATA_PATH,
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Starting Census ACS Transform")
|
||||
|
||||
df = self.df
|
||||
|
||||
# Rename two fields.
|
||||
self.df = self.df.rename(
|
||||
df = df.rename(
|
||||
columns={
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD: self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
||||
self.MEDIAN_INCOME_FIELD: self.MEDIAN_INCOME_FIELD_NAME,
|
||||
|
@ -119,19 +156,17 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.MEDIAN_INCOME_FIELD_NAME,
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
||||
]:
|
||||
missing_value_count = sum(self.df[field] == -666666666)
|
||||
missing_value_count = sum(df[field] == -666666666)
|
||||
logger.info(
|
||||
f"There are {missing_value_count} ({int(100*missing_value_count/self.df[field].count())}%) values of "
|
||||
f"There are {missing_value_count} ({int(100*missing_value_count/df[field].count())}%) values of "
|
||||
+ f"`{field}` being marked as null values."
|
||||
)
|
||||
self.df[field] = self.df[field].replace(
|
||||
to_replace=-666666666, value=None
|
||||
)
|
||||
df[field] = df[field].replace(to_replace=-666666666, value=None)
|
||||
|
||||
# Calculate percent unemployment.
|
||||
# TODO: remove small-sample data that should be `None` instead of a high-variance fraction.
|
||||
self.df[self.UNEMPLOYED_FIELD_NAME] = (
|
||||
self.df.B23025_005E / self.df.B23025_003E
|
||||
df[self.UNEMPLOYED_FIELD_NAME] = (
|
||||
df[self.TOTAL_UNEMPLOYED_FIELD] / df[self.TOTAL_IN_LABOR_FORCE]
|
||||
)
|
||||
|
||||
# Calculate linguistic isolation.
|
||||
|
@ -142,34 +177,64 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
"C16002_013E",
|
||||
]
|
||||
|
||||
self.df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME] = self.df[
|
||||
df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME] = df[
|
||||
individual_limited_english_fields
|
||||
].sum(axis=1, skipna=True)
|
||||
self.df[self.LINGUISTIC_ISOLATION_FIELD_NAME] = (
|
||||
self.df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME].astype(float)
|
||||
/ self.df["C16002_001E"]
|
||||
df[self.LINGUISTIC_ISOLATION_FIELD_NAME] = (
|
||||
df[self.LINGUISTIC_ISOLATION_TOTAL_FIELD_NAME].astype(float)
|
||||
/ df["C16002_001E"]
|
||||
)
|
||||
|
||||
# Calculate percent at different poverty thresholds
|
||||
self.df[self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"] + self.df["C17002_003E"]
|
||||
) / self.df["C17002_001E"]
|
||||
df[self.POVERTY_LESS_THAN_100_PERCENT_FPL_FIELD_NAME] = (
|
||||
df["C17002_002E"] + df["C17002_003E"]
|
||||
) / df["C17002_001E"]
|
||||
|
||||
self.df[self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"]
|
||||
+ self.df["C17002_003E"]
|
||||
+ self.df["C17002_004E"]
|
||||
+ self.df["C17002_005E"]
|
||||
) / self.df["C17002_001E"]
|
||||
df[self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME] = (
|
||||
df["C17002_002E"]
|
||||
+ df["C17002_003E"]
|
||||
+ df["C17002_004E"]
|
||||
+ df["C17002_005E"]
|
||||
) / df["C17002_001E"]
|
||||
|
||||
self.df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME] = (
|
||||
self.df["C17002_002E"]
|
||||
+ self.df["C17002_003E"]
|
||||
+ self.df["C17002_004E"]
|
||||
+ self.df["C17002_005E"]
|
||||
+ self.df["C17002_006E"]
|
||||
+ self.df["C17002_007E"]
|
||||
) / self.df["C17002_001E"]
|
||||
df[self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME] = (
|
||||
df["C17002_002E"]
|
||||
+ df["C17002_003E"]
|
||||
+ df["C17002_004E"]
|
||||
+ df["C17002_005E"]
|
||||
+ df["C17002_006E"]
|
||||
+ df["C17002_007E"]
|
||||
) / df["C17002_001E"]
|
||||
|
||||
# Calculate educational attainment
|
||||
educational_numerator_fields = [
|
||||
self.EDUCATION_NO_SCHOOLING,
|
||||
self.EDUCATION_NURSERY,
|
||||
self.EDUCATION_KINDERGARTEN,
|
||||
self.EDUCATION_FIRST,
|
||||
self.EDUCATION_SECOND,
|
||||
self.EDUCATION_THIRD,
|
||||
self.EDUCATION_FOURTH,
|
||||
self.EDUCATION_FIFTH,
|
||||
self.EDUCATION_SIXTH,
|
||||
self.EDUCATION_SEVENTH,
|
||||
self.EDUCATION_EIGHTH,
|
||||
self.EDUCATION_NINTH,
|
||||
self.EDUCATION_TENTH,
|
||||
self.EDUCATION_ELEVENTH,
|
||||
self.EDUCATION_TWELFTH_NO_DIPLOMA,
|
||||
]
|
||||
|
||||
df[self.HIGH_SCHOOL_ED_RAW_COUNT_FIELD] = df[
|
||||
educational_numerator_fields
|
||||
].sum(axis=1)
|
||||
df[self.HIGH_SCHOOL_ED_FIELD] = (
|
||||
df[self.HIGH_SCHOOL_ED_RAW_COUNT_FIELD]
|
||||
/ df[self.EDUCATION_POPULATION_OVER_25]
|
||||
)
|
||||
|
||||
# Save results to self.
|
||||
self.df = df
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Census ACS Data")
|
||||
|
@ -186,6 +251,7 @@ class CensusACSETL(ExtractTransformLoad):
|
|||
self.POVERTY_LESS_THAN_150_PERCENT_FPL_FIELD_NAME,
|
||||
self.POVERTY_LESS_THAN_200_PERCENT_FPL_FIELD_NAME,
|
||||
self.MEDIAN_HOUSE_VALUE_FIELD_NAME,
|
||||
self.HIGH_SCHOOL_ED_FIELD,
|
||||
]
|
||||
|
||||
self.df[columns_to_include].to_csv(
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
from pathlib import Path
|
||||
from typing import List
|
||||
import censusdata
|
||||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.sources.census.etl_utils import get_state_fips_codes
|
||||
from data_pipeline.utils import get_module_logger
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
def _fips_from_censusdata_censusgeo(
|
||||
censusgeo: censusdata.censusgeo
|
||||
) -> str:
|
||||
"""Create a FIPS code from the proprietary censusgeo index."""
|
||||
fips = "".join([value for (key, value) in censusgeo.params()])
|
||||
return fips
|
||||
|
||||
|
||||
# pylint: disable=too-many-arguments
|
||||
def retrieve_census_acs_data(
|
||||
acs_year: int,
|
||||
variables: List[str],
|
||||
tract_output_field_name: str,
|
||||
data_path_for_fips_codes: Path,
|
||||
acs_type="acs5",
|
||||
raise_errors: bool = False,
|
||||
) -> pd.DataFrame:
|
||||
"""Retrieves and combines census ACS data for a given year."""
|
||||
dfs = []
|
||||
for fips in get_state_fips_codes(data_path_for_fips_codes):
|
||||
logger.info(
|
||||
f"Downloading data for state/territory with FIPS code {fips}"
|
||||
)
|
||||
|
||||
try:
|
||||
response = censusdata.download(
|
||||
src=acs_type,
|
||||
year=acs_year,
|
||||
geo=censusdata.censusgeo(
|
||||
[("state", fips), ("county", "*"), ("tract", "*")]
|
||||
),
|
||||
var=variables,
|
||||
)
|
||||
dfs.append(response)
|
||||
|
||||
except ValueError as e:
|
||||
logger.error(
|
||||
f"Could not download data for state/territory with FIPS code {fips}"
|
||||
)
|
||||
|
||||
if raise_errors:
|
||||
raise e
|
||||
|
||||
df = pd.concat(dfs)
|
||||
|
||||
df[tract_output_field_name] = df.index.to_series().apply(
|
||||
func=_fips_from_censusdata_censusgeo
|
||||
)
|
||||
|
||||
return df
|
Loading…
Add table
Add a link
Reference in a new issue