mirror of
https://github.com/DOI-DO/j40-cejst-2.git
synced 2025-07-28 14:11:17 -07:00
Adding HOLC indicator (#1579)
Added HOLC indicator (Historic Redlining Score) from NCRC work; included 3.25 cutoff and low income as part of the housing burden category.
This commit is contained in:
parent
f047ca9d83
commit
1782d022a9
10 changed files with 202 additions and 40 deletions
|
@ -0,0 +1,72 @@
|
|||
import pandas as pd
|
||||
|
||||
from data_pipeline.etl.base import ExtractTransformLoad
|
||||
from data_pipeline.utils import get_module_logger
|
||||
from data_pipeline.config import settings
|
||||
|
||||
logger = get_module_logger(__name__)
|
||||
|
||||
|
||||
class HistoricRedliningETL(ExtractTransformLoad):
|
||||
def __init__(self):
|
||||
self.CSV_PATH = self.DATA_PATH / "dataset" / "historic_redlining"
|
||||
self.HISTORIC_REDLINING_URL = (
|
||||
settings.AWS_JUSTICE40_DATASOURCES_URL + "/HRS_2010.zip"
|
||||
)
|
||||
self.HISTORIC_REDLINING_FILE_PATH = (
|
||||
self.get_tmp_path() / "HRS_2010.xlsx"
|
||||
)
|
||||
|
||||
self.REDLINING_SCALAR = "Tract-level redlining score"
|
||||
|
||||
self.COLUMNS_TO_KEEP = [
|
||||
self.GEOID_TRACT_FIELD_NAME,
|
||||
self.REDLINING_SCALAR,
|
||||
]
|
||||
self.df: pd.DataFrame
|
||||
|
||||
def extract(self) -> None:
|
||||
logger.info("Downloading Historic Redlining Data")
|
||||
super().extract(
|
||||
self.HISTORIC_REDLINING_URL,
|
||||
self.get_tmp_path(),
|
||||
)
|
||||
|
||||
def transform(self) -> None:
|
||||
logger.info("Transforming Historic Redlining Data")
|
||||
# this is obviously temporary
|
||||
historic_redlining_data = pd.read_excel(
|
||||
self.HISTORIC_REDLINING_FILE_PATH
|
||||
)
|
||||
historic_redlining_data[self.GEOID_TRACT_FIELD_NAME] = (
|
||||
historic_redlining_data["GEOID10"].astype(str).str.zfill(11)
|
||||
)
|
||||
historic_redlining_data = historic_redlining_data.rename(
|
||||
columns={"HRS2010": self.REDLINING_SCALAR}
|
||||
)
|
||||
|
||||
logger.info(f"{historic_redlining_data.columns}")
|
||||
|
||||
# Calculate lots of different score thresholds for convenience
|
||||
for threshold in [3.25, 3.5, 3.75]:
|
||||
historic_redlining_data[
|
||||
f"{self.REDLINING_SCALAR} meets or exceeds {round(threshold, 2)}"
|
||||
] = (historic_redlining_data[self.REDLINING_SCALAR] >= threshold)
|
||||
## NOTE We add to columns to keep here
|
||||
self.COLUMNS_TO_KEEP.append(
|
||||
f"{self.REDLINING_SCALAR} meets or exceeds {round(threshold, 2)}"
|
||||
)
|
||||
|
||||
self.df = historic_redlining_data
|
||||
|
||||
def load(self) -> None:
|
||||
logger.info("Saving Historic Redlining CSV")
|
||||
# write selected states csv
|
||||
self.CSV_PATH.mkdir(parents=True, exist_ok=True)
|
||||
self.df[self.COLUMNS_TO_KEEP].to_csv(
|
||||
self.CSV_PATH / "usa.csv", index=False
|
||||
)
|
||||
|
||||
def validate(self) -> None:
|
||||
logger.info("Validating Historic Redlining Data")
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue