j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/maryland_ejscreen/etl.py

114 lines
4.3 KiB
Python
Raw Normal View History

from glob import glob
import geopandas as gpd
import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.utils import get_module_logger
from data_pipeline.score import field_names
from data_pipeline.config import settings
logger = get_module_logger(__name__)
class MarylandEJScreenETL(ExtractTransformLoad):
"""Maryland EJSCREEN class that ingests dataset represented
here: https://p1.cgis.umd.edu/mdejscreen/help.html
Please see the README in this module for further details.
"""
def __init__(self):
self.MARYLAND_EJSCREEN_URL = (
settings.AWS_JUSTICE40_DATASOURCES_URL + "/MD_EJScreen.zip"
)
self.SHAPE_FILES_PATH = self.get_tmp_path() / "mdejscreen"
self.OUTPUT_CSV_PATH = self.DATA_PATH / "dataset" / "maryland_ejscreen"
self.COLUMNS_TO_KEEP = [
self.GEOID_TRACT_FIELD_NAME,
field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD,
]
self.df: pd.DataFrame
def extract(self) -> None:
2022-01-18 14:56:55 -05:00
logger.info("Downloading 207MB Maryland EJSCREEN Data")
super().extract(
self.MARYLAND_EJSCREEN_URL,
self.get_tmp_path(),
)
def transform(self) -> None:
logger.info("Transforming Maryland EJSCREEN Data")
list_of_files = list(glob(str(self.SHAPE_FILES_PATH) + "/*.shp"))
# Ignore counties becauses this is not the level of measurement
# that is consistent with our current scoring and ranking methodology.
dfs_list = [
gpd.read_file(f)
for f in list_of_files
if not f.endswith("CountiesEJScore.shp")
]
# Set the Census tract as the index and drop the geometry column
# that produces the census tract boundaries.
# The latter is because Geopandas raises an exception if there
# are duplicate geometry columns.
# Moreover, since the unit of measurement is at the tract level
# we can consistantly merge this with other datasets
dfs_list = [
df.set_index("Census_Tra").drop("geometry", axis=1)
for df in dfs_list
]
# pylint: disable=unsubscriptable-object
self.df = gpd.GeoDataFrame(pd.concat(dfs_list, axis=1))
# Reset index so that we no longer have the tract as our index
self.df = self.df.reset_index()
# coerce GEODID into integer
# The only reason why this is done is because Maryland's GEODID's start with
# "24". This is NOT standard practice and should never be done as rightly pointed
# out by Lucas: "converting to int would lose the leading 0 and make this geoid invalid".
# pylint: disable=unsupported-assignment-operation, unsubscriptable-object
self.df["Census_Tra"] = (self.df["Census_Tra"]).astype(int)
# Drop the 10 census tracts that are zero: please see here:
# https://github.com/usds/justice40-tool/issues/239#issuecomment-995821572
self.df = self.df[self.df["Census_Tra"] != 0]
# Rename columns
self.df.rename(
columns={
"Census_Tra": self.GEOID_TRACT_FIELD_NAME,
"EJScore": field_names.MARYLAND_EJSCREEN_SCORE_FIELD,
},
inplace=True,
)
# This computational step will be used to establish a
# threshold for burden (line 104)
self.df[
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
] = self.df[field_names.MARYLAND_EJSCREEN_SCORE_FIELD].rank(
pct=True, ascending=True
)
# An arbitrarily chosen threshold is used in the comparison tool output
self.df[field_names.MARYLAND_EJSCREEN_BURDENED_THRESHOLD_FIELD] = (
self.df[
field_names.MARYLAND_EJSCREEN_SCORE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX
]
>= 0.75
)
def load(self) -> None:
logger.info("Saving Maryland EJSCREEN CSV")
# write maryland tracts to csv
self.OUTPUT_CSV_PATH.mkdir(parents=True, exist_ok=True)
self.df[self.COLUMNS_TO_KEEP].to_csv(
self.OUTPUT_CSV_PATH / "maryland.csv", index=False
)