j40-cejst-2/data/data-pipeline/data_pipeline/etl/sources/cdc_places/etl.py

67 lines
2 KiB
Python
Raw Normal View History

import pandas as pd
from data_pipeline.etl.base import ExtractTransformLoad
from data_pipeline.utils import get_module_logger, download_file_from_url
logger = get_module_logger(__name__)
class CDCPlacesETL(ExtractTransformLoad):
def __init__(self):
self.OUTPUT_PATH = self.DATA_PATH / "dataset" / "cdc_places"
self.CDC_PLACES_URL = "https://chronicdata.cdc.gov/api/views/cwsq-ngmh/rows.csv?accessType=DOWNLOAD"
self.CDC_GEOID_FIELD_NAME = "LocationID"
self.CDC_VALUE_FIELD_NAME = "Data_Value"
self.CDC_MEASURE_FIELD_NAME = "Measure"
self.df: pd.DataFrame
def extract(self) -> None:
logger.info("Starting to download 520MB CDC Places file.")
file_path = download_file_from_url(
file_url=self.CDC_PLACES_URL,
download_file_name=self.TMP_PATH
/ "cdc_places"
/ "census_tract.csv",
)
self.df = pd.read_csv(
filepath_or_buffer=file_path,
dtype={self.CDC_GEOID_FIELD_NAME: "string"},
low_memory=False,
)
def transform(self) -> None:
logger.info("Starting CDC Places transform")
# Rename GEOID field
self.df.rename(
columns={self.CDC_GEOID_FIELD_NAME: self.GEOID_TRACT_FIELD_NAME},
inplace=True,
errors="raise",
)
# Note: Puerto Rico not included.
self.df = self.df.pivot(
index=self.GEOID_TRACT_FIELD_NAME,
columns=self.CDC_MEASURE_FIELD_NAME,
values=self.CDC_VALUE_FIELD_NAME,
)
# Make the index (the census tract ID) a column, not the index.
self.df.reset_index(inplace=True)
def load(self) -> None:
logger.info("Saving CDC Places Data")
# mkdir census
self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
self.df.to_csv(path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False)
def validate(self) -> None:
logger.info("Validating Census ACS Data")
pass