ahrq-gov/archive.ahrq.gov/research/findings/nhqrdr/nhqr08/methods/hcupapa.html
2025-02-28 14:14:25 -05:00

234 lines
28 KiB
HTML

<!doctype html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9" lang="en"> <![endif]-->
<!-- Consider adding a manifest.appcache: h5bp.com/d/Offline -->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="perc_linkback" id="perc_linkback" content="FmFgYWNieAdieAFjZ2x4BmZnYHgTYWFjZWU="/> <!-- Use the .htaccess and remove these lines to avoid edge case issues. More info: h5bp.com/i/378 -->
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Appendix A - HCUP | AHRQ Archive</title>
<meta name="title" content="Appendix A - HCUP | AHRQ Archive">
<meta name="description" content="The National Healthcare Disparities Report (NHDR) tracks disparities in both quality of and access to health care in the United States for both the general population and for AHRQ's congressionally designated priority populations. This is the text version of the NHDR 2008 slide presentation.">
<!-- Mobile viewport optimized: h5bp.com/viewport -->
<meta name="viewport" content="width=device-width">
<!-- link rel="stylesheet" href="/css/style.css" -->
<!-- More ideas for your <head> here: h5bp.com/d/head-Tips -->
<!-- All JavaScript at the bottom, except this Modernizr build.
Modernizr enables HTML5 elements & feature detects for optimal performance.
Create your own custom Modernizr build: www.modernizr.com/ -->
<script src="/js/libs/modernizr-2.5.3.min.js"></script>
<!-- "metadata" -->
<meta name="keywords" content="Agency for Health Care Policy and Research, Agency for Healthcare Research and Quality, AHRQ, AHCPR, access, adverse outcomes, ambulatory care, benchmark, best practices, blood clots, CAHPS, case studies, chronic care, complication, conditions, Consumer Assessment of Health Plans, disparities, error, HAI, health cost, hepatitis, hospital procedure, health care-associated infections, indicators, infection, insurance, measures, medical errors, methodology, nursing, patient care, patient safety, performance measure, quality, study, survey, thrombosis, treatment, urgent care" />
<meta name="creator" content="Agency for Healthcare Research and Quality (AHRQ)">
<meta name="datecreated" content="March 2009">
<meta name="datereviewed" content="October 2014">
<meta name="language" content="en-us">
<!-- end="metadata" -->
<link rel="stylesheet" href="/css/archive.css">
<link rel="stylesheet" href="/css/ahrqstyleprint_arch.css" media="print">
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-75759936-1', 'auto');
ga(' set', 'anonymizeIp', true);
ga('send', 'pageview');
</script></head>
<body><!-- Google Tag Manager -->
<noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-W4DST4"
height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
'//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
})(window,document,'script','dataLayer','GTM-W4DST4');</script>
<!-- End Google Tag Manager -->
<!-- Prompt IE 6 users to install Chrome Frame. Remove this if you support IE 6.
chromium.org/developers/how-tos/chrome-frame-getting-started -->
<!--[if lt IE 7]><p class=chromeframe>Your browser is <em>ancient!</em> <a href="http://browsehappy.com/">Upgrade to a different browser</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to experience this site.</p><![endif]-->
<!-- Add your site or application content here -->
<noscript>Your browser doesn't support JavaScript. Please upgrade to a modern browser or enable JavaScript in your existing browser.</noscript>
<!-- Page Header v2.0 --><!--Begin Banner CodeS-->
<div id="ahrqbanner">
<div class="hhsportion" id="top" name="top">
<a class="skipnav" href="#h1">Skip Navigation</a>
<a title="Archive: U.S. Department of Health and Human Services" href="http://archive.hhs.gov/"><img border="0" alt="Archive: U.S. Department of Health and Human Services" src="/images/hhs_banner_arch.gif" width="376" height="49"></a>
<a class="hhsright" title="U.S. Department of Health and Human Services" href="http://www.hhs.gov/"><img alt="U.S. Department of Health and Human Services" src="/images/hhs_link_arch.gif" width="127" height="41"></a>
</div>
<div class="ahrqportion">
<a title="Archive: Agency for Healthcare Research Quality" href="/"><img border="0" alt="Archive: Agency for Healthcare Research Quality" src="/images/ahrq_banner_arch.jpg" width="566" height="69"></a>
<form id="banner_searchform" method="get" name="searchForm" action="https://search.ahrq.gov/search">
<label style="Z-INDEX: -1; POSITION: relative; FONT-SIZE: 0px; MARGIN-RIGHT: -65px" for="search">Search</label>
<input id="search" class="gotext" onfocus="this.value='';" value=" Search Archive" size="11" type="text" name="q" label="Search archive"/>
<input type="hidden" name="siteDomain" value="archive.ahrq.gov">
<input class="gobtn" onclick="javascript:document.searchForm.submit();" alt="Search" src="/images/topbn_GoButton.gif" type="image" name="Submit"/>
</form><a class="ahrqright" title="AHRQ Home—Live Site" href="http://www.ahrq.gov">www.ahrq.gov</a>
</div>
<div class="ahrqlinks">
<a href="https://www.ahrq.gov/">AHRQ Home—Live Site</a> | <a href="/">Archive Home</a> | <a href="/sitemap.htm">Site Map</a>
</div>
</div>
<div id="PrintBanner"><img alt="Archival print banner" src="/images/printbanner_arch.jpg"/></div><a id="h1" name="h1"></a><!-- End of Page header -->
<!-- Content Body -->
<div id="mainContent">
<!-- Main Content -->
<!-- Center Content section -->
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody><tr valign="top">
<td width="70%">
<!-- Center Content section -->
<table style="margin-left: 10px; margin-right: 10px; margin-top: 5px;" summary="This table gives the layout format of the bread crumb area and the center content area." border="0" cellpadding="0" cellspacing="0" width="100%">
<!--DWLayoutTable-->
<tbody><tr>
<td class="crumb_link"><div id="crumbContent">
</span></p>
</div>
</td>
</tr>
<tr>
<td>
<div id="centerContent">
<div class="headnote">
<p>This information is for reference purposes only. It was current when produced and may now be outdated. Archive material is no longer maintained, and some links may not work. Persons with disabilities having difficulty accessing this information should contact us at: <a href="https://info.ahrq.gov/">https://info.ahrq.gov</a>. Let us know the nature of the problem, the Web address of what you want, and your contact information.</p>
<p>Please go to <a href="https://www.ahrq.gov/">www.ahrq.gov</a> for current information.</p>
</div>
<!-- T:ahrqPgPublication -->
<div role="main" id="page-container">
<div id="breadcrumb-container">
<div id="breadcrumbs" class="container_12">
</div>
</div>
<div id="toolbar-container">
<div id="pub-toolbar" class="container_12">
<div id="prev-next-buttons">
<span>Page 1 of 1</span>
</div>
<div id="pub-utility-buttons">
<ul id="utility-groups">
</ul>
</div>
</div>
</div>
<div id="page-backdrop" class="container_12">
<div class="page">
<div id="left-col" class="alpha grid_3">
</div>
<!--<div id="content-col" class="grid_9">-->
<article class="grid_9">
<!-- Right Rail -->
<aside class="three-col">
<div id="pub-nums">
<ul>
<li>Publication # 09-0001</li> </ul>
</div>
<ul id="pub-buttons">
<li id="all-pubs-button"><a href="https://ahrqpubs.ahrq.gov/OA_HTML/ibeCCtpItmDspRte.jsp?section=10147&item=39953"></a></li>
</ul>
</aside>
<!-- Center Rail -->
<h1>Appendix A - HCUP</h1>
<h2>National Healthcare Quality Report, 2008</h2> <div id="basic-modal"><!-- start: Basic Modal -->
<a id="appendix_a" name="appendix_a"></a> <h3>Appendix A: Statistical Methods</h3><p>This section explains the statistical methods and gives formulas for the calculations of standard errors and hypothesis tests. These statistics are derived from multiple databases: the NIS, the SID, and Claritas (a vendor that compiles and adds value to Bureau of Census data). For NIS estimates, the standard errors are calculated as described in the HCUP report titled &quot;Calculating Nationwide Inpatient Sample (NIS) Variances&quot; (<a href="/research/findings/nhqrdr/nhqr08/methods/hcupqr.html#refer_9">Houchens, et al., 2005</a>). We will refer to this report simply as the NIS Variance Report throughout this section. This method takes into account the cluster and stratification aspects of the NIS sample design when calculating these statistics using the SAS procedure PROC SURVEYMEANS. For population counts based on Claritas data, there is no sampling error.</p><p>Even though the NIS contains discharges from a finite sample of hospitals and most of the SID databases contain nearly all discharges from nearly all hospitals in the State, we treat the samples as though they were drawn from an infinite population. We do not employ finite population correction factors in estimating standard errors. We take this approach because we view the outcomes as a result of myriad processes that go into treatment decisions rather than being the result of specific, fixed processes generating outcomes for a specific population and a specific year. We consider the NIS and SID to be samples from a &quot;super-population&quot; for purposes of variance estimation. Further, we assume the counts (of QI events) to be binomial.</p><h3>Section 1. Area Population QIs Using Claritas Population Data</h3><ol type="a"><li><em>Standard error estimates for discharge rates per 100,000 population using the 2005 Claritas population data.</em></li></ol><p>The observed rate was calculated as follows:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-1.jpg" alt="R equals 100,000 times sum of w sub i x sub i for i equals 1 through n, divided by capital N, which simplifies to 100,000 times capital S over capital N." title="R equals 100,000 times sum of w sub i x sub i for i equals 1 through n, divided by capital N, which simplifies to 100,000 times capital S over capital N." border="0" /></span>
</p><p>w<sub>i</sub> and x<sub>i,</sub> respectively, are the discharge weight and variable of interest for patient i in the NIS or SID. To obtain the estimate of <em>S</em> and its standard error, <em>SE<sub>S</sub></em>, we followed instructions in the NIS Variance Report (modified for the SID, as explained above).</p><p>The population count in the denominator is a constant. Consequently, the standard error of the rate <em>R</em> was calculated as:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-2.jpg" alt="S E sub R equals 100,000 times S E sub s over capital N." title="S E sub R equals 100,000 times S E sub s over capital N." border="0" /></span>
</p><ol type="a"><li value="2"><em>Standard error estimates for age/sex adjusted inpatient rates per 100,000 population using the 2005 Claritas data.</em></li></ol><p>We adjusted rates for age and sex using the method of direct standardization (<a href="#refer_8">Fleiss, 1973</a>). We estimated the observed rates for each of 36 age/sex categories (described in Appendix C, Age Groupings for Risk Adjustment). We then calculated a weighted average of those 36 rates using weights proportional to the percentage of a standard population in each cell. Therefore, the adjusted rate represents the rate that would be expected for the observed study population if it had the same age and sex distribution as the standard population.</p><p>For the standard population, we used the age and sex distribution of the United States as a whole according to the year 2000. In theory, differences among adjusted rates were not attributable to differences in the age and sex distributions among the comparison groups because the rates were all calculated with a common age and sex distribution.</p><p>The adjusted rate was calculated as follows (and subsequently multiplied by 100,000):</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-3.jpg" alt="A equals sum of standard population for cell g for g equals 1 through 36 sum of w sub g, i x sub g, i over observed population for i equals 1 through n (g) divided by sum of standard population for cell g for g equals 1 through 36, which equals sum g equals 1 through 36 sum standard population over observed population w sub g,i x sub g, i for i equals 1 through n(g) divided by standard population equals sum g equals 1 through 36 sum w asterisk sub g, i x sub g, i for i equals 1 through n (g) divided by stan" title="A equals sum of standard population for cell g for g equals 1 through 36 sum of w sub g, i x sub g, i over observed population for i equals 1 through n (g) divided by sum of standard population for cell g for g equals 1 through 36, which equals sum g equals 1 through 36 sum standard population over observed population w sub g,i x sub g, i for i equals 1 through n(g) divided by standard population equals sum g equals 1 through 36 sum w asterisk sub g, i x sub g, i for i equals 1 through n (g) divided by stan" border="0" /></span>
</p><p><em>g</em> = Index for the 36 age/sex cells.</p><p><em>N<sub>g,std</sub></em> = Standard population for cell g (year 2000 total U.S. population in cell g).</p><p><em>N<sub>g,obs</sub></em> = Observed population for cell g (year 2005 subpopulation in cell g; e.g., females, State of California).</p><p><em>n(g)</em> = Number in the sample for cell g.</p><p><em>x<sub>g,i</sub></em> = Observed quality indicator for observation i in cell g (e.g., 0 or 1 indicator).</p><p><em>w<sub>g,i</sub></em> = NIS or SID discharge weight for observation i in cell g.</p><p>The estimates for the numerator, <em>S*</em>, and its standard error, <em>SE<sub>S*</sub></em>, were calculated in similar fashion to the unadjusted estimates for the numerator S in formula A.1. The only difference was that the weight for patient i in cell g was redefined to account for the weighting for direct standardization and the discharge weight as:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-4.jpg" alt="w asterisk sub g, i equals standard population for cell g over observed population for cell g times w sub g, i." title="w asterisk sub g, i equals standard population for cell g over observed population for cell g times w sub g, i." border="0" /></span>
</p><p>Following instructions in the NIS Variance Report (modified for the SID, as explained above), we used PROC SURVEYMEANS to obtain the estimate of <em>S*</em> (A.3), the weighted sum in the numerator using the revised weights (A.4), and the estimate <em>SE<sub>S*</sub></em>, the standard error of the weighted sum <em>S*</em>. The denominator of the rate is a constant. Therefore, the standard error of the adjusted rate, <em>A,</em> was calculated as</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-5.jpg" alt="S E sub A equals 100,000 S E sub S asterisk over standard population." title="S E sub A equals 100,000 S E sub S asterisk over standard population." border="0" /></span>
</p><h3>Section 2. Provider-Based QIs Using Weighted Discharge Data (SID and NIS)</h3><ol type="a"><li><em>Standard error estimates for inpatient rates per 1,000 discharges using discharge counts in both the numerator and the denominator.</em></li></ol><p>We calculated the observed rate as follows:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-6.jpg" alt="R equals 1,000 times sum w sub i x sub i for i equals through n over sum w sub i for i equals 1 through n equals 1,000 times capital S over capital N." title="R equals 1,000 times sum w sub i x sub i for i equals through n over sum w sub i for i equals 1 through n equals 1,000 times capital S over capital N." border="0" /></span>
</p><p>Following instructions in the HCUP NIS Variance Report (modified for the SID, as explained above), we used PROC SURVEYMEANS to obtain estimates of the discharge weighted mean, <em>S/N</em>, and the standard error of that weighted mean, <em>SE<sub>S/N</sub></em>. We multiplied this standard error by 1,000.</p><ol type="a"><li value="2"><em>Standard error estimates for age/sex adjusted inpatient rates per 1,000 discharges using inpatient counts in both the numerator and the denominator.</em></li></ol><p>We used the full NIS estimates for the standard inpatient population age-sex distribution. For each of the 36 age-sex categories, we estimated the number of U.S. inpatient discharges,<span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-In-1.jpg" alt="N hat sub g, s t d" title="N hat sub g, s t d" border="0" /></span>
, in category g. We calculated the directly adjusted rate:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-7.jpg" alt="A equals 1,000 times sum standard inpatient population for cell g for g equals 1 through 36 sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g) divided by sum standard inpatient population for cell g for g equals 1 through 36 equals 1,000 times sum proportion of standard inpatient population in cell g for g equals 1 through 36 sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g)." title="A equals 1,000 times sum standard inpatient population for cell g for g equals 1 through 36 sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g) divided by sum standard inpatient population for cell g for g equals 1 through 36 equals 1,000 times sum proportion of standard inpatient population in cell g for g equals 1 through 36 sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g)." border="0" /></span>
</p><p><em>g</em> = Index for the 36 age/sex cells.</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-In-1.jpg" alt="N hat sub g, s t d" title="N hat sub g, s t d" border="0" /></span>
= Standard inpatient population for cell g (NIS estimate of the total U.S. inpatient population for cell g).</p><p><em>n(g)</em> = Number in the sample for cell g.</p><p><em>x<sub>g,i</sub></em> = Observed quality indicator for observation i in cell g.</p><p><em>w<sub>g,i</sub></em> = NIS or SID discharge weight for observation i in cell g.</p><p>Note that <span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-In-2.jpg" alt="proportion of standard inpatient population in cell g (P hat sub g, s t d) equals standard inpatient population in cell g divided by sum standard inpatient population in cell g for g equals 1 through 36" title="proportion of standard inpatient population in cell g (P hat sub g, s t d) equals standard inpatient population in cell g divided by sum standard inpatient population in cell g for g equals 1 through 36" border="0" /></span>
is the proportion of the standard inpatient population in cell g. Consequently, the adjusted rate is a weighted average of the cell-specific rates with cell weights equal to <span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-In-3.jpg" alt="P hat sub g, s t d" title="P hat sub g, s t d" border="0" /></span>
. These cell weights are merely a convenient, reasonable standard inpatient population distribution for the direct standardization. Therefore, we treat these cell weights as constants in the variance calculations:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-8.jpg" alt="S E (A) equals square root of Var (A) equals 1,000 times square root of Var of the expression sum proportion of standard inpatient population in cell g for g equals 1 through 36 times sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g) equals 1,000 times square root of sum proportion of standard inpatient population in cell g squared for g equals 1 through 36 times Var sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 t" title="S E (A) equals square root of Var (A) equals 1,000 times square root of Var of the expression sum proportion of standard inpatient population in cell g for g equals 1 through 36 times sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g) equals 1,000 times square root of sum proportion of standard inpatient population in cell g squared for g equals 1 through 36 times Var sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 t" border="0" /></span>
</p><p>The variance of the ratio enclosed in parentheses was estimated separately for each cell g by squaring the SE calculated using the method of Section 2.a:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-9.jpg" alt="S E (A) equals 1,000 times square root of the expression sum proportion of standard inpatient population in cell g squared for g equals 1 through 36 times S E (R sub g) squared. R sub g equals sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g)." title="S E (A) equals 1,000 times square root of the expression sum proportion of standard inpatient population in cell g squared for g equals 1 through 36 times S E (R sub g) squared. R sub g equals sum w sub g, i x sub g, i for i equals 1 through n(g) over sum w sub g, i for i equals 1 through n(g)." border="0" /></span>
</p><p>Following instructions in the HCUP NIS Variance Report (modified for the SID, as explained above), we used PROC SURVEYMEANS to obtain estimates of the weighted means, <em>R<sub>g</sub></em>, and their standard errors.</p><h3>Section 3. Significance Tests</h3><p>Let <em>R<sub>1</sub></em> and <em>R<sub>2</sub></em> be either observed or adjusted rates calculated for comparison groups 1 and 2, respectively. Let <em>SE<sub>1</sub></em> and <em>SE<sub>2</sub></em> be the corresponding standard errors for the two rates. We calculated the test statistic and (two-sided) p-value:</p><p><span><img src="/research/findings/nhqrdr/nhqr08/methods/HCUP-Eq-10.jpg" alt="t equals R sub 1 minus R sub 2 over square root of standard error sub 1 squared plus standard error sub 2 squared. p equals 2 times Prob (Z greater than pipe t pipe)." title="t equals R sub 1 minus R sub 2 over square root of standard error sub 1 squared plus standard error sub 2 squared. p equals 2 times Prob (Z greater than pipe t pipe)." border="0" /></span>
</p><p>where <em>Z</em> is a standard normal variate.</p><p><strong>Note:</strong> the following functions calculate <em>p</em> in SAS and EXCEL:</p><p>SAS: p = 2 * (1&#8212;PROBNORM(ABS(t)));</p><p>EXCEL: = 2*(1- NORMDIST(ABS(t),0,1,TRUE))</p><p class="size2"><a href="/research/findings/nhqrdr/nhqr08/methods/hcupqr.html#apa">Return to Document</a></p> </div><!-- end: Basic Modal -->
<div class="current-as-of">Current as of March 2009</div>
<div class="citation">
<span>Internet Citation: Appendix A - HCUP: National Healthcare Quality Report, 2008.
March 2009. Agency for Healthcare Research and Quality, Rockville, MD. http://archive.ahrq.gov/research/findings/nhqrdr/nhqr08/methods/hcupapa.html</span>
<div class="citation-flag"></div>
</div>
</article>
</div>
</div>
</div>
<p>&nbsp;</p>
<div class="footnote">
<p> The information on this page is archived and provided for reference purposes only.</p>
</div>
<p>&nbsp;</p>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</div><!-- End of Content Body -->
<!-- Footer graphic 1.2-->
<table border="0" cellSpacing="0" cellPadding="0" width="100%">
<tbody>
<tr>
<td background="/images/bottom_ahrq_bkg.jpg" width="125">
<img alt="AHRQ" src="/images/bottom_ahrq_1.jpg" width="125">
</td>
<td background="/images/bottom_ahrq_bkg.jpg" width="100%">
<img alt="" src="/images/bottom_ahrq_bkg.jpg" width="10" height="34">
</td>
<td background="/images/bottom_ahrq_bkg.jpg" width="310">
<img alt="Advancing Excellence in Health Care" src="/images/bottom_ahrq_2.gif" width="310" height="34">
</td>
</tr>
</tbody>
</table>
<!-- Footer links section -->
<div id="banner_Footer2">
<p>
<a href="https://www.ahrq.gov/">AHRQ Home</a> |
<a class="footer_navlink" href="https://info.ahrq.gov/cgi-bin/ahrq.cfg/php/enduser/std_alp.php">Questions?</a> |
<a class="footer_navlink" href="https://www.ahrq.gov/contact/index.html">Contact AHRQ</a> |
<a class="footer_navlink" href="https://www.ahrq.gov/policy/electronic/accessibility/index.html">Accessibility</a> |
<a class="footer_navlink" href="https://www.ahrq.gov/policy/electronic/privacy/index.html">Privacy Policy</a> |
<a class="footer_navlink" href="https://www.ahrq.gov/news/foia.htm">Freedom of Information Act</a> |
<a class="footer_navlink" href="https://www.ahrq.gov/policy/electronic/disclaimers/index.html">Disclaimers</a> |
<a class="footer_navlink" href="http://www.hhs.gov/open/recordsandreports/plainwritingact/index.html">Plain Writing Act</a>
<br/>
<a class="footer_navlink" href="http://www.hhs.gov">U.S. Department of Health &amp; Human Services</a> |
<a class="footer_navlink" href="http://www.whitehouse.gov">The White House</a> |
<a class="footer_navlink" href="http://www.usa.gov">USA.gov: The U.S. Government's Official Web Portal</a>
</p>
</div>
<div id="banner_Footeraddress">
<p>
Agency for Healthcare Research and Quality <img alt="" src="/images/bottom_dot.gif"> 5600 Fishers Lane Rockville, MD 20857 <img alt="" src="/images/bottom_dot.gif">
Telephone: (301) 427-1364
</p>
</div>
<!-- End of Footer links section -->
<!-- JavaScript at the bottom for fast page loading: http://developer.yahoo.com/performance/rules.html#js_bottom -->
<!-- Grab Google CDN's jQuery, with a protocol relative URL; fall back to local if offline -->
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="js/libs/jquery-1.7.2.min.js"><\/script>')</script>
<!-- scripts concatenated and minified via build script -->
<script src="/js/plugins.js"></script>
<script src="/js/script.js"></script>
<script src="/scripts/javascript.js"></script>
<!-- end scripts -->
</body>
</html>