mirror of
https://github.com/ansible-collections/google.cloud.git
synced 2025-04-05 10:20:26 -07:00
634 lines
20 KiB
Python
634 lines
20 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
#
|
|
# Copyright (C) 2017 Google
|
|
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
|
|
# ----------------------------------------------------------------------------
|
|
#
|
|
# *** AUTO GENERATED CODE *** AUTO GENERATED CODE ***
|
|
#
|
|
# ----------------------------------------------------------------------------
|
|
#
|
|
# This file is automatically generated by Magic Modules and manual
|
|
# changes will be clobbered when the file is regenerated.
|
|
#
|
|
# Please read more about how to change this file at
|
|
# https://www.github.com/GoogleCloudPlatform/magic-modules
|
|
#
|
|
# ----------------------------------------------------------------------------
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
__metaclass__ = type
|
|
|
|
################################################################################
|
|
# Documentation
|
|
################################################################################
|
|
|
|
ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'}
|
|
|
|
DOCUMENTATION = '''
|
|
---
|
|
module: gcp_mlengine_version
|
|
description:
|
|
- Each version is a trained model deployed in the cloud, ready to handle prediction
|
|
requests. A model can have multiple versions .
|
|
short_description: Creates a GCP Version
|
|
version_added: '2.9'
|
|
author: Google Inc. (@googlecloudplatform)
|
|
requirements:
|
|
- python >= 2.6
|
|
- requests >= 2.18.4
|
|
- google-auth >= 1.3.0
|
|
options:
|
|
state:
|
|
description:
|
|
- Whether the given object should exist in GCP
|
|
choices:
|
|
- present
|
|
- absent
|
|
default: present
|
|
type: str
|
|
name:
|
|
description:
|
|
- The name specified for the version when it was created.
|
|
- The version name must be unique within the model it is created in.
|
|
required: true
|
|
type: str
|
|
description:
|
|
description:
|
|
- The description specified for the version when it was created.
|
|
required: false
|
|
type: str
|
|
deployment_uri:
|
|
description:
|
|
- The Cloud Storage location of the trained model used to create the version.
|
|
required: true
|
|
type: str
|
|
runtime_version:
|
|
description:
|
|
- The AI Platform runtime version to use for this deployment.
|
|
required: false
|
|
type: str
|
|
machine_type:
|
|
description:
|
|
- The type of machine on which to serve the model. Currently only applies to online
|
|
prediction service.
|
|
- 'Some valid choices include: "mls1-c1-m2", "mls1-c4-m2"'
|
|
required: false
|
|
type: str
|
|
labels:
|
|
description:
|
|
- One or more labels that you can add, to organize your model versions.
|
|
required: false
|
|
type: dict
|
|
framework:
|
|
description:
|
|
- The machine learning framework AI Platform uses to train this version of the
|
|
model.
|
|
- 'Some valid choices include: "FRAMEWORK_UNSPECIFIED", "TENSORFLOW", "SCIKIT_LEARN",
|
|
"XGBOOST"'
|
|
required: false
|
|
type: str
|
|
python_version:
|
|
description:
|
|
- The version of Python used in prediction. If not set, the default version is
|
|
'2.7'. Python '3.5' is available when runtimeVersion is set to '1.4' and above.
|
|
Python '2.7' works with all supported runtime versions.
|
|
- 'Some valid choices include: "2.7", "3.5"'
|
|
required: false
|
|
type: str
|
|
service_account:
|
|
description:
|
|
- Specifies the service account for resource access control.
|
|
required: false
|
|
type: str
|
|
auto_scaling:
|
|
description:
|
|
- Automatically scale the number of nodes used to serve the model in response
|
|
to increases and decreases in traffic. Care should be taken to ramp up traffic
|
|
according to the model's ability to scale or you will start seeing increases
|
|
in latency and 429 response codes.
|
|
required: false
|
|
type: dict
|
|
suboptions:
|
|
min_nodes:
|
|
description:
|
|
- The minimum number of nodes to allocate for this mode.
|
|
required: false
|
|
type: int
|
|
manual_scaling:
|
|
description:
|
|
- Manually select the number of nodes to use for serving the model. You should
|
|
generally use autoScaling with an appropriate minNodes instead, but this option
|
|
is available if you want more predictable billing. Beware that latency and error
|
|
rates will increase if the traffic exceeds that capability of the system to
|
|
serve it based on the selected number of nodes.
|
|
required: false
|
|
type: dict
|
|
suboptions:
|
|
nodes:
|
|
description:
|
|
- The number of nodes to allocate for this model. These nodes are always up,
|
|
starting from the time the model is deployed.
|
|
required: false
|
|
type: int
|
|
prediction_class:
|
|
description:
|
|
- The fully qualified name (module_name.class_name) of a class that implements
|
|
the Predictor interface described in this reference field. The module containing
|
|
this class should be included in a package provided to the packageUris field.
|
|
required: false
|
|
type: str
|
|
model:
|
|
description:
|
|
- The model that this version belongs to.
|
|
- 'This field represents a link to a Model resource in GCP. It can be specified
|
|
in two ways. First, you can place a dictionary with key ''name'' and value of
|
|
your resource''s name Alternatively, you can add `register: name-of-resource`
|
|
to a gcp_mlengine_model task and then set this model field to "{{ name-of-resource
|
|
}}"'
|
|
required: true
|
|
type: dict
|
|
is_default:
|
|
description:
|
|
- If true, this version will be used to handle prediction requests that do not
|
|
specify a version.
|
|
required: false
|
|
type: bool
|
|
aliases:
|
|
- default
|
|
project:
|
|
description:
|
|
- The Google Cloud Platform project to use.
|
|
type: str
|
|
auth_kind:
|
|
description:
|
|
- The type of credential used.
|
|
type: str
|
|
required: true
|
|
choices:
|
|
- application
|
|
- machineaccount
|
|
- serviceaccount
|
|
service_account_contents:
|
|
description:
|
|
- The contents of a Service Account JSON file, either in a dictionary or as a
|
|
JSON string that represents it.
|
|
type: jsonarg
|
|
service_account_file:
|
|
description:
|
|
- The path of a Service Account JSON file if serviceaccount is selected as type.
|
|
type: path
|
|
service_account_email:
|
|
description:
|
|
- An optional service account email address if machineaccount is selected and
|
|
the user does not wish to use the default email.
|
|
type: str
|
|
scopes:
|
|
description:
|
|
- Array of scopes to be used
|
|
type: list
|
|
env_type:
|
|
description:
|
|
- Specifies which Ansible environment you're running this module within.
|
|
- This should not be set unless you know what you're doing.
|
|
- This only alters the User Agent string for any API requests.
|
|
type: str
|
|
'''
|
|
|
|
EXAMPLES = '''
|
|
- name: create a model
|
|
google.cloud.gcp_mlengine_model:
|
|
name: model_version
|
|
description: My model
|
|
regions:
|
|
- us-central1
|
|
online_prediction_logging: 'true'
|
|
online_prediction_console_logging: 'true'
|
|
project: "{{ gcp_project }}"
|
|
auth_kind: "{{ gcp_cred_kind }}"
|
|
service_account_file: "{{ gcp_cred_file }}"
|
|
state: present
|
|
register: model
|
|
|
|
- name: create a version
|
|
google.cloud.gcp_mlengine_version:
|
|
name: "{{ resource_name | replace('-', '_') }}"
|
|
model: "{{ model }}"
|
|
runtime_version: 1.13
|
|
python_version: 3.5
|
|
is_default: 'true'
|
|
deployment_uri: gs://ansible-cloudml-bucket/
|
|
project: test_project
|
|
auth_kind: serviceaccount
|
|
service_account_file: "/tmp/auth.pem"
|
|
state: present
|
|
'''
|
|
|
|
RETURN = '''
|
|
name:
|
|
description:
|
|
- The name specified for the version when it was created.
|
|
- The version name must be unique within the model it is created in.
|
|
returned: success
|
|
type: str
|
|
description:
|
|
description:
|
|
- The description specified for the version when it was created.
|
|
returned: success
|
|
type: str
|
|
deploymentUri:
|
|
description:
|
|
- The Cloud Storage location of the trained model used to create the version.
|
|
returned: success
|
|
type: str
|
|
createTime:
|
|
description:
|
|
- The time the version was created.
|
|
returned: success
|
|
type: str
|
|
lastUseTime:
|
|
description:
|
|
- The time the version was last used for prediction.
|
|
returned: success
|
|
type: str
|
|
runtimeVersion:
|
|
description:
|
|
- The AI Platform runtime version to use for this deployment.
|
|
returned: success
|
|
type: str
|
|
machineType:
|
|
description:
|
|
- The type of machine on which to serve the model. Currently only applies to online
|
|
prediction service.
|
|
returned: success
|
|
type: str
|
|
state:
|
|
description:
|
|
- The state of a version.
|
|
returned: success
|
|
type: str
|
|
errorMessage:
|
|
description:
|
|
- The details of a failure or cancellation.
|
|
returned: success
|
|
type: str
|
|
packageUris:
|
|
description:
|
|
- Cloud Storage paths (gs://…) of packages for custom prediction routines or scikit-learn
|
|
pipelines with custom code.
|
|
returned: success
|
|
type: list
|
|
labels:
|
|
description:
|
|
- One or more labels that you can add, to organize your model versions.
|
|
returned: success
|
|
type: dict
|
|
framework:
|
|
description:
|
|
- The machine learning framework AI Platform uses to train this version of the model.
|
|
returned: success
|
|
type: str
|
|
pythonVersion:
|
|
description:
|
|
- The version of Python used in prediction. If not set, the default version is '2.7'.
|
|
Python '3.5' is available when runtimeVersion is set to '1.4' and above. Python
|
|
'2.7' works with all supported runtime versions.
|
|
returned: success
|
|
type: str
|
|
serviceAccount:
|
|
description:
|
|
- Specifies the service account for resource access control.
|
|
returned: success
|
|
type: str
|
|
autoScaling:
|
|
description:
|
|
- Automatically scale the number of nodes used to serve the model in response to
|
|
increases and decreases in traffic. Care should be taken to ramp up traffic according
|
|
to the model's ability to scale or you will start seeing increases in latency
|
|
and 429 response codes.
|
|
returned: success
|
|
type: complex
|
|
contains:
|
|
minNodes:
|
|
description:
|
|
- The minimum number of nodes to allocate for this mode.
|
|
returned: success
|
|
type: int
|
|
manualScaling:
|
|
description:
|
|
- Manually select the number of nodes to use for serving the model. You should generally
|
|
use autoScaling with an appropriate minNodes instead, but this option is available
|
|
if you want more predictable billing. Beware that latency and error rates will
|
|
increase if the traffic exceeds that capability of the system to serve it based
|
|
on the selected number of nodes.
|
|
returned: success
|
|
type: complex
|
|
contains:
|
|
nodes:
|
|
description:
|
|
- The number of nodes to allocate for this model. These nodes are always up,
|
|
starting from the time the model is deployed.
|
|
returned: success
|
|
type: int
|
|
predictionClass:
|
|
description:
|
|
- The fully qualified name (module_name.class_name) of a class that implements the
|
|
Predictor interface described in this reference field. The module containing this
|
|
class should be included in a package provided to the packageUris field.
|
|
returned: success
|
|
type: str
|
|
model:
|
|
description:
|
|
- The model that this version belongs to.
|
|
returned: success
|
|
type: dict
|
|
isDefault:
|
|
description:
|
|
- If true, this version will be used to handle prediction requests that do not specify
|
|
a version.
|
|
returned: success
|
|
type: bool
|
|
'''
|
|
|
|
################################################################################
|
|
# Imports
|
|
################################################################################
|
|
|
|
from ansible_collections.google.cloud.plugins.module_utils.gcp_utils import (
|
|
navigate_hash,
|
|
GcpSession,
|
|
GcpModule,
|
|
GcpRequest,
|
|
remove_nones_from_dict,
|
|
replace_resource_dict,
|
|
)
|
|
import json
|
|
import time
|
|
|
|
################################################################################
|
|
# Main
|
|
################################################################################
|
|
|
|
|
|
def main():
|
|
"""Main function"""
|
|
|
|
module = GcpModule(
|
|
argument_spec=dict(
|
|
state=dict(default='present', choices=['present', 'absent'], type='str'),
|
|
name=dict(required=True, type='str'),
|
|
description=dict(type='str'),
|
|
deployment_uri=dict(required=True, type='str'),
|
|
runtime_version=dict(type='str'),
|
|
machine_type=dict(type='str'),
|
|
labels=dict(type='dict'),
|
|
framework=dict(type='str'),
|
|
python_version=dict(type='str'),
|
|
service_account=dict(type='str'),
|
|
auto_scaling=dict(type='dict', options=dict(min_nodes=dict(type='int'))),
|
|
manual_scaling=dict(type='dict', options=dict(nodes=dict(type='int'))),
|
|
prediction_class=dict(type='str'),
|
|
model=dict(required=True, type='dict'),
|
|
is_default=dict(type='bool', aliases=['default']),
|
|
),
|
|
mutually_exclusive=[['auto_scaling', 'manual_scaling']],
|
|
)
|
|
|
|
if not module.params['scopes']:
|
|
module.params['scopes'] = ['https://www.googleapis.com/auth/cloud-platform']
|
|
|
|
state = module.params['state']
|
|
|
|
fetch = fetch_resource(module, self_link(module))
|
|
changed = False
|
|
|
|
if fetch:
|
|
if state == 'present':
|
|
if is_different(module, fetch):
|
|
update(module, self_link(module))
|
|
fetch = fetch_resource(module, self_link(module))
|
|
changed = True
|
|
else:
|
|
delete(module, self_link(module))
|
|
fetch = {}
|
|
changed = True
|
|
else:
|
|
if state == 'present':
|
|
fetch = create(module, collection(module))
|
|
if module.params.get('is_default') is True:
|
|
set_default(module)
|
|
changed = True
|
|
else:
|
|
fetch = {}
|
|
|
|
fetch.update({'changed': changed})
|
|
|
|
module.exit_json(**fetch)
|
|
|
|
|
|
def create(module, link):
|
|
auth = GcpSession(module, 'mlengine')
|
|
return wait_for_operation(module, auth.post(link, resource_to_request(module)))
|
|
|
|
|
|
def update(module, link):
|
|
if module.params.get('is_default') is True:
|
|
set_default(module)
|
|
|
|
|
|
def delete(module, link):
|
|
auth = GcpSession(module, 'mlengine')
|
|
return wait_for_operation(module, auth.delete(link))
|
|
|
|
|
|
def resource_to_request(module):
|
|
request = {
|
|
u'name': module.params.get('name'),
|
|
u'description': module.params.get('description'),
|
|
u'deploymentUri': module.params.get('deployment_uri'),
|
|
u'runtimeVersion': module.params.get('runtime_version'),
|
|
u'machineType': module.params.get('machine_type'),
|
|
u'labels': module.params.get('labels'),
|
|
u'framework': module.params.get('framework'),
|
|
u'pythonVersion': module.params.get('python_version'),
|
|
u'serviceAccount': module.params.get('service_account'),
|
|
u'autoScaling': VersionAutoscaling(module.params.get('auto_scaling', {}), module).to_request(),
|
|
u'manualScaling': VersionManualscaling(module.params.get('manual_scaling', {}), module).to_request(),
|
|
u'predictionClass': module.params.get('prediction_class'),
|
|
}
|
|
return_vals = {}
|
|
for k, v in request.items():
|
|
if v or v is False:
|
|
return_vals[k] = v
|
|
|
|
return return_vals
|
|
|
|
|
|
def fetch_resource(module, link, allow_not_found=True):
|
|
auth = GcpSession(module, 'mlengine')
|
|
return return_if_object(module, auth.get(link), allow_not_found)
|
|
|
|
|
|
def self_link(module):
|
|
res = {'project': module.params['project'], 'model': replace_resource_dict(module.params['model'], 'name'), 'name': module.params['name']}
|
|
return "https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions/{name}".format(**res)
|
|
|
|
|
|
def collection(module):
|
|
res = {'project': module.params['project'], 'model': replace_resource_dict(module.params['model'], 'name')}
|
|
return "https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions".format(**res)
|
|
|
|
|
|
def return_if_object(module, response, allow_not_found=False):
|
|
# If not found, return nothing.
|
|
if allow_not_found and response.status_code == 404:
|
|
return None
|
|
|
|
# If no content, return nothing.
|
|
if response.status_code == 204:
|
|
return None
|
|
|
|
try:
|
|
module.raise_for_status(response)
|
|
result = response.json()
|
|
except getattr(json.decoder, 'JSONDecodeError', ValueError):
|
|
module.fail_json(msg="Invalid JSON response with error: %s" % response.text)
|
|
|
|
result = decode_response(result, module)
|
|
|
|
if navigate_hash(result, ['error', 'errors']):
|
|
module.fail_json(msg=navigate_hash(result, ['error', 'errors']))
|
|
|
|
return result
|
|
|
|
|
|
def is_different(module, response):
|
|
request = resource_to_request(module)
|
|
response = response_to_hash(module, response)
|
|
request = decode_response(request, module)
|
|
|
|
# Remove all output-only from response.
|
|
response_vals = {}
|
|
for k, v in response.items():
|
|
if k in request:
|
|
response_vals[k] = v
|
|
|
|
request_vals = {}
|
|
for k, v in request.items():
|
|
if k in response:
|
|
request_vals[k] = v
|
|
|
|
return GcpRequest(request_vals) != GcpRequest(response_vals)
|
|
|
|
|
|
# Remove unnecessary properties from the response.
|
|
# This is for doing comparisons with Ansible's current parameters.
|
|
def response_to_hash(module, response):
|
|
return {
|
|
u'name': response.get(u'name'),
|
|
u'description': response.get(u'description'),
|
|
u'deploymentUri': response.get(u'deploymentUri'),
|
|
u'createTime': response.get(u'createTime'),
|
|
u'lastUseTime': response.get(u'lastUseTime'),
|
|
u'runtimeVersion': response.get(u'runtimeVersion'),
|
|
u'machineType': response.get(u'machineType'),
|
|
u'state': response.get(u'state'),
|
|
u'errorMessage': response.get(u'errorMessage'),
|
|
u'packageUris': response.get(u'packageUris'),
|
|
u'labels': response.get(u'labels'),
|
|
u'framework': response.get(u'framework'),
|
|
u'pythonVersion': response.get(u'pythonVersion'),
|
|
u'serviceAccount': response.get(u'serviceAccount'),
|
|
u'autoScaling': VersionAutoscaling(response.get(u'autoScaling', {}), module).from_response(),
|
|
u'manualScaling': VersionManualscaling(response.get(u'manualScaling', {}), module).from_response(),
|
|
u'predictionClass': response.get(u'predictionClass'),
|
|
}
|
|
|
|
|
|
def async_op_url(module, extra_data=None):
|
|
if extra_data is None:
|
|
extra_data = {}
|
|
url = "https://ml.googleapis.com/v1/{op_id}"
|
|
combined = extra_data.copy()
|
|
combined.update(module.params)
|
|
return url.format(**combined)
|
|
|
|
|
|
def wait_for_operation(module, response):
|
|
op_result = return_if_object(module, response)
|
|
if op_result is None:
|
|
return {}
|
|
status = navigate_hash(op_result, ['done'])
|
|
wait_done = wait_for_completion(status, op_result, module)
|
|
raise_if_errors(wait_done, ['error'], module)
|
|
return navigate_hash(wait_done, ['response'])
|
|
|
|
|
|
def wait_for_completion(status, op_result, module):
|
|
op_id = navigate_hash(op_result, ['name'])
|
|
op_uri = async_op_url(module, {'op_id': op_id})
|
|
while not status:
|
|
raise_if_errors(op_result, ['error'], module)
|
|
time.sleep(1.0)
|
|
op_result = fetch_resource(module, op_uri, False)
|
|
status = navigate_hash(op_result, ['done'])
|
|
return op_result
|
|
|
|
|
|
def raise_if_errors(response, err_path, module):
|
|
errors = navigate_hash(response, err_path)
|
|
if errors is not None:
|
|
module.fail_json(msg=errors)
|
|
|
|
|
|
# Short names are given (and expected) by the API
|
|
# but are returned as full names.
|
|
def decode_response(response, module):
|
|
if 'name' in response and 'metadata' not in response:
|
|
response['name'] = response['name'].split('/')[-1]
|
|
return response
|
|
|
|
|
|
# Sets this version as default.
|
|
def set_default(module):
|
|
res = {'project': module.params['project'], 'model': replace_resource_dict(module.params['model'], 'name'), 'name': module.params['name']}
|
|
link = "https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions/{name}:setDefault".format(**res)
|
|
|
|
auth = GcpSession(module, 'mlengine')
|
|
return_if_object(module, auth.post(link))
|
|
|
|
|
|
class VersionAutoscaling(object):
|
|
def __init__(self, request, module):
|
|
self.module = module
|
|
if request:
|
|
self.request = request
|
|
else:
|
|
self.request = {}
|
|
|
|
def to_request(self):
|
|
return remove_nones_from_dict({u'minNodes': self.request.get('min_nodes')})
|
|
|
|
def from_response(self):
|
|
return remove_nones_from_dict({u'minNodes': self.request.get(u'minNodes')})
|
|
|
|
|
|
class VersionManualscaling(object):
|
|
def __init__(self, request, module):
|
|
self.module = module
|
|
if request:
|
|
self.request = request
|
|
else:
|
|
self.request = {}
|
|
|
|
def to_request(self):
|
|
return remove_nones_from_dict({u'nodes': self.request.get('nodes')})
|
|
|
|
def from_response(self):
|
|
return remove_nones_from_dict({u'nodes': self.request.get(u'nodes')})
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|