#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** Type: MMv1 *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_compute_autoscaler description: - Represents an Autoscaler resource. - Autoscalers allow you to automatically scale virtual machine instances in managed instance groups according to an autoscaling policy that you define. short_description: Creates a GCP Autoscaler author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: state: description: - Whether the given object should exist in GCP choices: - present - absent default: present type: str name: description: - Name of the resource. The name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. required: true type: str description: description: - An optional description of this resource. required: false type: str autoscaling_policy: description: - 'The configuration parameters for the autoscaling algorithm. You can define one or more of the policies for an autoscaler: cpuUtilization, customMetricUtilizations, and loadBalancingUtilization.' - If none of these are specified, the default will be to autoscale based on cpuUtilization to 0.6 or 60%. required: true type: dict suboptions: min_num_replicas: description: - The minimum number of replicas that the autoscaler can scale down to. This cannot be less than 0. If not provided, autoscaler will choose a default value depending on maximum number of instances allowed. required: false type: int aliases: - minReplicas max_num_replicas: description: - The maximum number of instances that the autoscaler can scale up to. This is required when creating or updating an autoscaler. The maximum number of replicas should not be lower than minimal number of replicas. required: true type: int aliases: - maxReplicas cool_down_period_sec: description: - The number of seconds that the autoscaler should wait before it starts collecting information from a new instance. This prevents the autoscaler from collecting information when the instance is initializing, during which the collected usage would not be reliable. The default time autoscaler waits is 60 seconds. - Virtual machine initialization times might vary because of numerous factors. We recommend that you test how long an instance may take to initialize. To do this, create an instance and time the startup process. required: false default: '60' type: int aliases: - cooldownPeriod mode: description: - Defines operating mode for this policy. - 'Some valid choices include: "OFF", "ONLY_UP", "ON"' required: false default: 'ON' type: str scale_in_control: description: - Defines scale in controls to reduce the risk of response latency and outages due to abrupt scale-in events . required: false type: dict suboptions: max_scaled_in_replicas: description: - A nested object resource. required: false type: dict suboptions: fixed: description: - Specifies a fixed number of VM instances. This must be a positive integer. required: false type: int percent: description: - Specifies a percentage of instances between 0 to 100%, inclusive. - For example, specify 80 for 80%. required: false type: int time_window_sec: description: - How long back autoscaling should look when computing recommendations to include directives regarding slower scale down, as described above. required: false type: int cpu_utilization: description: - Defines the CPU utilization policy that allows the autoscaler to scale based on the average CPU utilization of a managed instance group. required: false type: dict suboptions: utilization_target: description: - The target CPU utilization that the autoscaler should maintain. - Must be a float value in the range (0, 1]. If not specified, the default is 0.6. - If the CPU level is below the target utilization, the autoscaler scales down the number of instances until it reaches the minimum number of instances you specified or until the average CPU of your instances reaches the target utilization. - If the average CPU is above the target utilization, the autoscaler scales up until it reaches the maximum number of instances you specified or until the average utilization reaches the target utilization. required: false type: str aliases: - target predictive_method: description: - 'Indicates whether predictive autoscaling based on CPU metric is enabled. Valid values are: - NONE (default). No predictive method is used. The autoscaler scales the group to meet current demand based on real-time metrics.' - "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability by monitoring daily and weekly load patterns and scaling out ahead of anticipated demand." required: false default: NONE type: str custom_metric_utilizations: description: - Configuration parameters of autoscaling based on a custom metric. elements: dict required: false type: list aliases: - metric suboptions: metric: description: - The identifier (type) of the Stackdriver Monitoring metric. - The metric cannot have negative values. - The metric must have a value type of INT64 or DOUBLE. required: true type: str aliases: - name utilization_target: description: - The target value of the metric that autoscaler should maintain. This must be a positive value. A utilization metric scales number of virtual machines handling requests to increase or decrease proportionally to the metric. - For example, a good metric to use as a utilizationTarget is U(www.googleapis.com/compute/instance/network/received_bytes_count). - The autoscaler will work to keep this value constant for each of the instances. required: false type: str aliases: - target utilization_target_type: description: - Defines how target utilization value is expressed for a Stackdriver Monitoring metric. - 'Some valid choices include: "GAUGE", "DELTA_PER_SECOND", "DELTA_PER_MINUTE"' required: false type: str aliases: - type load_balancing_utilization: description: - Configuration parameters of autoscaling based on a load balancer. required: false type: dict suboptions: utilization_target: description: - Fraction of backend capacity utilization (set in HTTP(s) load balancing configuration) that autoscaler should maintain. Must be a positive float value. If not defined, the default is 0.8. required: false type: str aliases: - target target: description: - URL of the managed instance group that this autoscaler will scale. - 'This field represents a link to a InstanceGroupManager resource in GCP. It can be specified in two ways. First, you can place a dictionary with key ''selfLink'' and value of your resource''s selfLink Alternatively, you can add `register: name-of-resource` to a gcp_compute_instance_group_manager task and then set this target field to "{{ name-of-resource }}"' required: true type: dict zone: description: - URL of the zone where the instance group resides. required: true type: str project: description: - The Google Cloud Platform project to use. type: str auth_kind: description: - The type of credential used. type: str required: true choices: - application - machineaccount - serviceaccount service_account_contents: description: - The contents of a Service Account JSON file, either in a dictionary or as a JSON string that represents it. type: jsonarg service_account_file: description: - The path of a Service Account JSON file if serviceaccount is selected as type. type: path service_account_email: description: - An optional service account email address if machineaccount is selected and the user does not wish to use the default email. type: str scopes: description: - Array of scopes to be used type: list elements: str env_type: description: - Specifies which Ansible environment you're running this module within. - This should not be set unless you know what you're doing. - This only alters the User Agent string for any API requests. type: str notes: - 'API Reference: U(https://cloud.google.com/compute/docs/reference/rest/v1/autoscalers)' - 'Autoscaling Groups of Instances: U(https://cloud.google.com/compute/docs/autoscaler/)' - for authentication, you can set service_account_file using the C(GCP_SERVICE_ACCOUNT_FILE) env variable. - for authentication, you can set service_account_contents using the C(GCP_SERVICE_ACCOUNT_CONTENTS) env variable. - For authentication, you can set service_account_email using the C(GCP_SERVICE_ACCOUNT_EMAIL) env variable. - For authentication, you can set auth_kind using the C(GCP_AUTH_KIND) env variable. - For authentication, you can set scopes using the C(GCP_SCOPES) env variable. - Environment variables values will only be used if the playbook values are not set. - The I(service_account_email) and I(service_account_file) options are mutually exclusive. ''' EXAMPLES = ''' - name: create a network google.cloud.gcp_compute_network: name: network-instancetemplate project: "{{ gcp_project }}" auth_kind: "{{ gcp_cred_kind }}" service_account_file: "{{ gcp_cred_file }}" state: present register: network - name: create a address google.cloud.gcp_compute_address: name: address-instancetemplate region: us-central1 project: "{{ gcp_project }}" auth_kind: "{{ gcp_cred_kind }}" service_account_file: "{{ gcp_cred_file }}" state: present register: address - name: create a instance template google.cloud.gcp_compute_instance_template: name: "{{ resource_name }}" properties: disks: - auto_delete: 'true' boot: 'true' initialize_params: source_image: projects/ubuntu-os-cloud/global/images/family/ubuntu-1604-lts machine_type: n1-standard-1 network_interfaces: - network: "{{ network }}" access_configs: - name: test-config type: ONE_TO_ONE_NAT nat_ip: "{{ address }}" project: "{{ gcp_project }}" auth_kind: "{{ gcp_cred_kind }}" service_account_file: "{{ gcp_cred_file }}" state: present register: instancetemplate - name: create a instance group manager google.cloud.gcp_compute_instance_group_manager: name: "{{ resource_name }}" base_instance_name: test1-child instance_template: "{{ instancetemplate }}" target_size: 3 zone: us-central1-a project: "{{ gcp_project }}" auth_kind: "{{ gcp_cred_kind }}" service_account_file: "{{ gcp_cred_file }}" state: present register: igm - name: create a autoscaler google.cloud.gcp_compute_autoscaler: name: test_object zone: us-central1-a target: "{{ igm }}" autoscaling_policy: max_num_replicas: 5 min_num_replicas: 1 cool_down_period_sec: 60 cpu_utilization: utilization_target: 0.5 project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" state: present ''' RETURN = ''' id: description: - Unique identifier for the resource. returned: success type: int creationTimestamp: description: - Creation timestamp in RFC3339 text format. returned: success type: str name: description: - Name of the resource. The name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. returned: success type: str description: description: - An optional description of this resource. returned: success type: str autoscalingPolicy: description: - 'The configuration parameters for the autoscaling algorithm. You can define one or more of the policies for an autoscaler: cpuUtilization, customMetricUtilizations, and loadBalancingUtilization.' - If none of these are specified, the default will be to autoscale based on cpuUtilization to 0.6 or 60%. returned: success type: complex contains: minNumReplicas: description: - The minimum number of replicas that the autoscaler can scale down to. This cannot be less than 0. If not provided, autoscaler will choose a default value depending on maximum number of instances allowed. returned: success type: int maxNumReplicas: description: - The maximum number of instances that the autoscaler can scale up to. This is required when creating or updating an autoscaler. The maximum number of replicas should not be lower than minimal number of replicas. returned: success type: int coolDownPeriodSec: description: - The number of seconds that the autoscaler should wait before it starts collecting information from a new instance. This prevents the autoscaler from collecting information when the instance is initializing, during which the collected usage would not be reliable. The default time autoscaler waits is 60 seconds. - Virtual machine initialization times might vary because of numerous factors. We recommend that you test how long an instance may take to initialize. To do this, create an instance and time the startup process. returned: success type: int mode: description: - Defines operating mode for this policy. returned: success type: str scaleInControl: description: - Defines scale in controls to reduce the risk of response latency and outages due to abrupt scale-in events . returned: success type: complex contains: maxScaledInReplicas: description: - A nested object resource. returned: success type: complex contains: fixed: description: - Specifies a fixed number of VM instances. This must be a positive integer. returned: success type: int percent: description: - Specifies a percentage of instances between 0 to 100%, inclusive. - For example, specify 80 for 80%. returned: success type: int timeWindowSec: description: - How long back autoscaling should look when computing recommendations to include directives regarding slower scale down, as described above. returned: success type: int cpuUtilization: description: - Defines the CPU utilization policy that allows the autoscaler to scale based on the average CPU utilization of a managed instance group. returned: success type: complex contains: utilizationTarget: description: - The target CPU utilization that the autoscaler should maintain. - Must be a float value in the range (0, 1]. If not specified, the default is 0.6. - If the CPU level is below the target utilization, the autoscaler scales down the number of instances until it reaches the minimum number of instances you specified or until the average CPU of your instances reaches the target utilization. - If the average CPU is above the target utilization, the autoscaler scales up until it reaches the maximum number of instances you specified or until the average utilization reaches the target utilization. returned: success type: str predictiveMethod: description: - 'Indicates whether predictive autoscaling based on CPU metric is enabled. Valid values are: - NONE (default). No predictive method is used. The autoscaler scales the group to meet current demand based on real-time metrics.' - "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability by monitoring daily and weekly load patterns and scaling out ahead of anticipated demand." returned: success type: str customMetricUtilizations: description: - Configuration parameters of autoscaling based on a custom metric. returned: success type: complex contains: metric: description: - The identifier (type) of the Stackdriver Monitoring metric. - The metric cannot have negative values. - The metric must have a value type of INT64 or DOUBLE. returned: success type: str utilizationTarget: description: - The target value of the metric that autoscaler should maintain. This must be a positive value. A utilization metric scales number of virtual machines handling requests to increase or decrease proportionally to the metric. - For example, a good metric to use as a utilizationTarget is U(www.googleapis.com/compute/instance/network/received_bytes_count). - The autoscaler will work to keep this value constant for each of the instances. returned: success type: str utilizationTargetType: description: - Defines how target utilization value is expressed for a Stackdriver Monitoring metric. returned: success type: str loadBalancingUtilization: description: - Configuration parameters of autoscaling based on a load balancer. returned: success type: complex contains: utilizationTarget: description: - Fraction of backend capacity utilization (set in HTTP(s) load balancing configuration) that autoscaler should maintain. Must be a positive float value. If not defined, the default is 0.8. returned: success type: str target: description: - URL of the managed instance group that this autoscaler will scale. returned: success type: dict zone: description: - URL of the zone where the instance group resides. returned: success type: str ''' ################################################################################ # Imports ################################################################################ from ansible_collections.google.cloud.plugins.module_utils.gcp_utils import ( navigate_hash, GcpSession, GcpModule, GcpRequest, remove_nones_from_dict, replace_resource_dict, ) import json import time ################################################################################ # Main ################################################################################ def main(): """Main function""" module = GcpModule( argument_spec=dict( state=dict(default='present', choices=['present', 'absent'], type='str'), name=dict(required=True, type='str'), description=dict(type='str'), autoscaling_policy=dict( required=True, type='dict', options=dict( min_num_replicas=dict(type='int', aliases=['minReplicas']), max_num_replicas=dict(required=True, type='int', aliases=['maxReplicas']), cool_down_period_sec=dict(default=60, type='int', aliases=['cooldownPeriod']), mode=dict(default='ON', type='str'), scale_in_control=dict( type='dict', options=dict( max_scaled_in_replicas=dict(type='dict', options=dict(fixed=dict(type='int'), percent=dict(type='int'))), time_window_sec=dict(type='int'), ), ), cpu_utilization=dict( type='dict', options=dict(utilization_target=dict(type='str', aliases=['target']), predictive_method=dict(default='NONE', type='str')) ), custom_metric_utilizations=dict( type='list', elements='dict', aliases=['metric'], options=dict( metric=dict(required=True, type='str', aliases=['name']), utilization_target=dict(type='str', aliases=['target']), utilization_target_type=dict(type='str', aliases=['type']), ), ), load_balancing_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str', aliases=['target']))), ), ), target=dict(required=True, type='dict'), zone=dict(required=True, type='str'), ) ) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/compute'] state = module.params['state'] kind = 'compute#autoscaler' fetch = fetch_resource(module, self_link(module), kind) changed = False if fetch: if state == 'present': if is_different(module, fetch): update(module, self_link(module), kind) fetch = fetch_resource(module, self_link(module), kind) changed = True else: delete(module, self_link(module), kind) fetch = {} changed = True else: if state == 'present': fetch = create(module, collection(module), kind) changed = True else: fetch = {} fetch.update({'changed': changed}) module.exit_json(**fetch) def create(module, link, kind): auth = GcpSession(module, 'compute') return wait_for_operation(module, auth.post(link, resource_to_request(module))) def update(module, link, kind): auth = GcpSession(module, 'compute') return wait_for_operation(module, auth.put(link, resource_to_request(module))) def delete(module, link, kind): auth = GcpSession(module, 'compute') return wait_for_operation(module, auth.delete(link)) def resource_to_request(module): request = { u'kind': 'compute#autoscaler', u'zone': module.params.get('zone'), u'name': module.params.get('name'), u'description': module.params.get('description'), u'autoscalingPolicy': AutoscalerAutoscalingpolicy(module.params.get('autoscaling_policy', {}), module).to_request(), u'target': replace_resource_dict(module.params.get(u'target', {}), 'selfLink'), } return_vals = {} for k, v in request.items(): if v or v is False: return_vals[k] = v return return_vals def fetch_resource(module, link, kind, allow_not_found=True): auth = GcpSession(module, 'compute') return return_if_object(module, auth.get(link), kind, allow_not_found) def self_link(module): return "https://compute.googleapis.com/compute/v1/projects/{project}/zones/{zone}/autoscalers/{name}".format(**module.params) def collection(module): return "https://compute.googleapis.com/compute/v1/projects/{project}/zones/{zone}/autoscalers".format(**module.params) def return_if_object(module, response, kind, allow_not_found=False): # If not found, return nothing. if allow_not_found and response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError): module.fail_json(msg="Invalid JSON response with error: %s" % response.text) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result def is_different(module, response): request = resource_to_request(module) response = response_to_hash(module, response) # Remove all output-only from response. response_vals = {} for k, v in response.items(): if k in request: response_vals[k] = v request_vals = {} for k, v in request.items(): if k in response: request_vals[k] = v return GcpRequest(request_vals) != GcpRequest(response_vals) # Remove unnecessary properties from the response. # This is for doing comparisons with Ansible's current parameters. def response_to_hash(module, response): return { u'id': response.get(u'id'), u'creationTimestamp': response.get(u'creationTimestamp'), u'name': module.params.get('name'), u'description': response.get(u'description'), u'autoscalingPolicy': AutoscalerAutoscalingpolicy(response.get(u'autoscalingPolicy', {}), module).from_response(), u'target': response.get(u'target'), } def async_op_url(module, extra_data=None): if extra_data is None: extra_data = {} url = "https://compute.googleapis.com/compute/v1/projects/{project}/zones/{zone}/operations/{op_id}" combined = extra_data.copy() combined.update(module.params) return url.format(**combined) def wait_for_operation(module, response): op_result = return_if_object(module, response, 'compute#operation') if op_result is None: return {} status = navigate_hash(op_result, ['status']) wait_done = wait_for_completion(status, op_result, module) return fetch_resource(module, navigate_hash(wait_done, ['targetLink']), 'compute#autoscaler') def wait_for_completion(status, op_result, module): op_id = navigate_hash(op_result, ['name']) op_uri = async_op_url(module, {'op_id': op_id}) while status != 'DONE': raise_if_errors(op_result, ['error', 'errors'], module) time.sleep(1.0) op_result = fetch_resource(module, op_uri, 'compute#operation', False) status = navigate_hash(op_result, ['status']) return op_result def raise_if_errors(response, err_path, module): errors = navigate_hash(response, err_path) if errors is not None: module.fail_json(msg=errors) class AutoscalerAutoscalingpolicy(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( { u'minNumReplicas': self.request.get('min_num_replicas'), u'maxNumReplicas': self.request.get('max_num_replicas'), u'coolDownPeriodSec': self.request.get('cool_down_period_sec'), u'mode': self.request.get('mode'), u'scaleInControl': AutoscalerScaleincontrol(self.request.get('scale_in_control', {}), self.module).to_request(), u'cpuUtilization': AutoscalerCpuutilization(self.request.get('cpu_utilization', {}), self.module).to_request(), u'customMetricUtilizations': AutoscalerCustommetricutilizationsArray( self.request.get('custom_metric_utilizations', []), self.module ).to_request(), u'loadBalancingUtilization': AutoscalerLoadbalancingutilization(self.request.get('load_balancing_utilization', {}), self.module).to_request(), } ) def from_response(self): return remove_nones_from_dict( { u'minNumReplicas': self.request.get(u'minNumReplicas'), u'maxNumReplicas': self.request.get(u'maxNumReplicas'), u'coolDownPeriodSec': self.request.get(u'coolDownPeriodSec'), u'mode': self.request.get(u'mode'), u'scaleInControl': AutoscalerScaleincontrol(self.request.get(u'scaleInControl', {}), self.module).from_response(), u'cpuUtilization': AutoscalerCpuutilization(self.request.get(u'cpuUtilization', {}), self.module).from_response(), u'customMetricUtilizations': AutoscalerCustommetricutilizationsArray( self.request.get(u'customMetricUtilizations', []), self.module ).from_response(), u'loadBalancingUtilization': AutoscalerLoadbalancingutilization(self.request.get(u'loadBalancingUtilization', {}), self.module).from_response(), } ) class AutoscalerScaleincontrol(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( { u'maxScaledInReplicas': AutoscalerMaxscaledinreplicas(self.request.get('max_scaled_in_replicas', {}), self.module).to_request(), u'timeWindowSec': self.request.get('time_window_sec'), } ) def from_response(self): return remove_nones_from_dict( { u'maxScaledInReplicas': AutoscalerMaxscaledinreplicas(self.request.get(u'maxScaledInReplicas', {}), self.module).from_response(), u'timeWindowSec': self.request.get(u'timeWindowSec'), } ) class AutoscalerMaxscaledinreplicas(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict({u'fixed': self.request.get('fixed'), u'percent': self.request.get('percent')}) def from_response(self): return remove_nones_from_dict({u'fixed': self.request.get(u'fixed'), u'percent': self.request.get(u'percent')}) class AutoscalerCpuutilization(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( {u'utilizationTarget': self.request.get('utilization_target'), u'predictiveMethod': self.request.get('predictive_method')} ) def from_response(self): return remove_nones_from_dict( {u'utilizationTarget': self.request.get(u'utilizationTarget'), u'predictiveMethod': self.request.get(u'predictiveMethod')} ) class AutoscalerCustommetricutilizationsArray(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = [] def to_request(self): items = [] for item in self.request: items.append(self._request_for_item(item)) return items def from_response(self): items = [] for item in self.request: items.append(self._response_from_item(item)) return items def _request_for_item(self, item): return remove_nones_from_dict( {u'metric': item.get('metric'), u'utilizationTarget': item.get('utilization_target'), u'utilizationTargetType': item.get('utilization_target_type')} ) def _response_from_item(self, item): return remove_nones_from_dict( {u'metric': item.get(u'metric'), u'utilizationTarget': item.get(u'utilizationTarget'), u'utilizationTargetType': item.get(u'utilizationTargetType')} ) class AutoscalerLoadbalancingutilization(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict({u'utilizationTarget': self.request.get('utilization_target')}) def from_response(self): return remove_nones_from_dict({u'utilizationTarget': self.request.get(u'utilizationTarget')}) if __name__ == '__main__': main()