mirror of
https://github.com/ansible-collections/google.cloud.git
synced 2025-04-06 10:50:28 -07:00
Signed-off-by: Modular Magician <magic-modules@google.com>
This commit is contained in:
parent
7f65d2b8c1
commit
3f863e0a5c
4 changed files with 84 additions and 6 deletions
|
@ -165,6 +165,18 @@ options:
|
|||
type: str
|
||||
aliases:
|
||||
- target
|
||||
predictive_method:
|
||||
description:
|
||||
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
|
||||
Valid values are: - NONE (default). No predictive method is used. The
|
||||
autoscaler scales the group to meet current demand based on real-time
|
||||
metrics.'
|
||||
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
|
||||
by monitoring daily and weekly load patterns and scaling out ahead of
|
||||
anticipated demand."
|
||||
required: false
|
||||
default: NONE
|
||||
type: str
|
||||
custom_metric_utilizations:
|
||||
description:
|
||||
- Configuration parameters of autoscaling based on a custom metric.
|
||||
|
@ -476,6 +488,17 @@ autoscalingPolicy:
|
|||
the average utilization reaches the target utilization.
|
||||
returned: success
|
||||
type: str
|
||||
predictiveMethod:
|
||||
description:
|
||||
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
|
||||
Valid values are: - NONE (default). No predictive method is used. The
|
||||
autoscaler scales the group to meet current demand based on real-time
|
||||
metrics.'
|
||||
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
|
||||
by monitoring daily and weekly load patterns and scaling out ahead of
|
||||
anticipated demand."
|
||||
returned: success
|
||||
type: str
|
||||
customMetricUtilizations:
|
||||
description:
|
||||
- Configuration parameters of autoscaling based on a custom metric.
|
||||
|
@ -572,7 +595,9 @@ def main():
|
|||
time_window_sec=dict(type='int'),
|
||||
),
|
||||
),
|
||||
cpu_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str', aliases=['target']))),
|
||||
cpu_utilization=dict(
|
||||
type='dict', options=dict(utilization_target=dict(type='str', aliases=['target']), predictive_method=dict(default='NONE', type='str'))
|
||||
),
|
||||
custom_metric_utilizations=dict(
|
||||
type='list',
|
||||
elements='dict',
|
||||
|
@ -844,10 +869,14 @@ class AutoscalerCpuutilization(object):
|
|||
self.request = {}
|
||||
|
||||
def to_request(self):
|
||||
return remove_nones_from_dict({u'utilizationTarget': self.request.get('utilization_target')})
|
||||
return remove_nones_from_dict(
|
||||
{u'utilizationTarget': self.request.get('utilization_target'), u'predictiveMethod': self.request.get('predictive_method')}
|
||||
)
|
||||
|
||||
def from_response(self):
|
||||
return remove_nones_from_dict({u'utilizationTarget': self.request.get(u'utilizationTarget')})
|
||||
return remove_nones_from_dict(
|
||||
{u'utilizationTarget': self.request.get(u'utilizationTarget'), u'predictiveMethod': self.request.get(u'predictiveMethod')}
|
||||
)
|
||||
|
||||
|
||||
class AutoscalerCustommetricutilizationsArray(object):
|
||||
|
|
|
@ -235,6 +235,17 @@ resources:
|
|||
or until the average utilization reaches the target utilization.
|
||||
returned: success
|
||||
type: str
|
||||
predictiveMethod:
|
||||
description:
|
||||
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
|
||||
Valid values are: - NONE (default). No predictive method is used.
|
||||
The autoscaler scales the group to meet current demand based on real-time
|
||||
metrics.'
|
||||
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
|
||||
by monitoring daily and weekly load patterns and scaling out ahead
|
||||
of anticipated demand."
|
||||
returned: success
|
||||
type: str
|
||||
customMetricUtilizations:
|
||||
description:
|
||||
- Configuration parameters of autoscaling based on a custom metric.
|
||||
|
|
|
@ -157,6 +157,18 @@ options:
|
|||
until the average utilization reaches the target utilization.
|
||||
required: false
|
||||
type: str
|
||||
predictive_method:
|
||||
description:
|
||||
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
|
||||
Valid values are: - NONE (default). No predictive method is used. The
|
||||
autoscaler scales the group to meet current demand based on real-time
|
||||
metrics.'
|
||||
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
|
||||
by monitoring daily and weekly load patterns and scaling out ahead of
|
||||
anticipated demand."
|
||||
required: false
|
||||
default: NONE
|
||||
type: str
|
||||
custom_metric_utilizations:
|
||||
description:
|
||||
- Configuration parameters of autoscaling based on a custom metric.
|
||||
|
@ -453,6 +465,17 @@ autoscalingPolicy:
|
|||
the average utilization reaches the target utilization.
|
||||
returned: success
|
||||
type: str
|
||||
predictiveMethod:
|
||||
description:
|
||||
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
|
||||
Valid values are: - NONE (default). No predictive method is used. The
|
||||
autoscaler scales the group to meet current demand based on real-time
|
||||
metrics.'
|
||||
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
|
||||
by monitoring daily and weekly load patterns and scaling out ahead of
|
||||
anticipated demand."
|
||||
returned: success
|
||||
type: str
|
||||
customMetricUtilizations:
|
||||
description:
|
||||
- Configuration parameters of autoscaling based on a custom metric.
|
||||
|
@ -549,7 +572,7 @@ def main():
|
|||
time_window_sec=dict(type='int'),
|
||||
),
|
||||
),
|
||||
cpu_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str'))),
|
||||
cpu_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str'), predictive_method=dict(default='NONE', type='str'))),
|
||||
custom_metric_utilizations=dict(
|
||||
type='list',
|
||||
elements='dict',
|
||||
|
@ -820,10 +843,14 @@ class RegionAutoscalerCpuutilization(object):
|
|||
self.request = {}
|
||||
|
||||
def to_request(self):
|
||||
return remove_nones_from_dict({u'utilizationTarget': self.request.get('utilization_target')})
|
||||
return remove_nones_from_dict(
|
||||
{u'utilizationTarget': self.request.get('utilization_target'), u'predictiveMethod': self.request.get('predictive_method')}
|
||||
)
|
||||
|
||||
def from_response(self):
|
||||
return remove_nones_from_dict({u'utilizationTarget': self.request.get(u'utilizationTarget')})
|
||||
return remove_nones_from_dict(
|
||||
{u'utilizationTarget': self.request.get(u'utilizationTarget'), u'predictiveMethod': self.request.get(u'predictiveMethod')}
|
||||
)
|
||||
|
||||
|
||||
class RegionAutoscalerCustommetricutilizationsArray(object):
|
||||
|
|
|
@ -235,6 +235,17 @@ resources:
|
|||
or until the average utilization reaches the target utilization.
|
||||
returned: success
|
||||
type: str
|
||||
predictiveMethod:
|
||||
description:
|
||||
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
|
||||
Valid values are: - NONE (default). No predictive method is used.
|
||||
The autoscaler scales the group to meet current demand based on real-time
|
||||
metrics.'
|
||||
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
|
||||
by monitoring daily and weekly load patterns and scaling out ahead
|
||||
of anticipated demand."
|
||||
returned: success
|
||||
type: str
|
||||
customMetricUtilizations:
|
||||
description:
|
||||
- Configuration parameters of autoscaling based on a custom metric.
|
||||
|
|
Loading…
Add table
Reference in a new issue