predictive autoscaling ga (#4789) (#417)

Signed-off-by: Modular Magician <magic-modules@google.com>
This commit is contained in:
The Magician 2021-05-15 03:53:32 -07:00 committed by GitHub
parent 7f65d2b8c1
commit 3f863e0a5c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 84 additions and 6 deletions

View file

@ -165,6 +165,18 @@ options:
type: str
aliases:
- target
predictive_method:
description:
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
Valid values are: - NONE (default). No predictive method is used. The
autoscaler scales the group to meet current demand based on real-time
metrics.'
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
by monitoring daily and weekly load patterns and scaling out ahead of
anticipated demand."
required: false
default: NONE
type: str
custom_metric_utilizations:
description:
- Configuration parameters of autoscaling based on a custom metric.
@ -476,6 +488,17 @@ autoscalingPolicy:
the average utilization reaches the target utilization.
returned: success
type: str
predictiveMethod:
description:
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
Valid values are: - NONE (default). No predictive method is used. The
autoscaler scales the group to meet current demand based on real-time
metrics.'
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
by monitoring daily and weekly load patterns and scaling out ahead of
anticipated demand."
returned: success
type: str
customMetricUtilizations:
description:
- Configuration parameters of autoscaling based on a custom metric.
@ -572,7 +595,9 @@ def main():
time_window_sec=dict(type='int'),
),
),
cpu_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str', aliases=['target']))),
cpu_utilization=dict(
type='dict', options=dict(utilization_target=dict(type='str', aliases=['target']), predictive_method=dict(default='NONE', type='str'))
),
custom_metric_utilizations=dict(
type='list',
elements='dict',
@ -844,10 +869,14 @@ class AutoscalerCpuutilization(object):
self.request = {}
def to_request(self):
return remove_nones_from_dict({u'utilizationTarget': self.request.get('utilization_target')})
return remove_nones_from_dict(
{u'utilizationTarget': self.request.get('utilization_target'), u'predictiveMethod': self.request.get('predictive_method')}
)
def from_response(self):
return remove_nones_from_dict({u'utilizationTarget': self.request.get(u'utilizationTarget')})
return remove_nones_from_dict(
{u'utilizationTarget': self.request.get(u'utilizationTarget'), u'predictiveMethod': self.request.get(u'predictiveMethod')}
)
class AutoscalerCustommetricutilizationsArray(object):

View file

@ -235,6 +235,17 @@ resources:
or until the average utilization reaches the target utilization.
returned: success
type: str
predictiveMethod:
description:
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
Valid values are: - NONE (default). No predictive method is used.
The autoscaler scales the group to meet current demand based on real-time
metrics.'
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
by monitoring daily and weekly load patterns and scaling out ahead
of anticipated demand."
returned: success
type: str
customMetricUtilizations:
description:
- Configuration parameters of autoscaling based on a custom metric.

View file

@ -157,6 +157,18 @@ options:
until the average utilization reaches the target utilization.
required: false
type: str
predictive_method:
description:
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
Valid values are: - NONE (default). No predictive method is used. The
autoscaler scales the group to meet current demand based on real-time
metrics.'
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
by monitoring daily and weekly load patterns and scaling out ahead of
anticipated demand."
required: false
default: NONE
type: str
custom_metric_utilizations:
description:
- Configuration parameters of autoscaling based on a custom metric.
@ -453,6 +465,17 @@ autoscalingPolicy:
the average utilization reaches the target utilization.
returned: success
type: str
predictiveMethod:
description:
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
Valid values are: - NONE (default). No predictive method is used. The
autoscaler scales the group to meet current demand based on real-time
metrics.'
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
by monitoring daily and weekly load patterns and scaling out ahead of
anticipated demand."
returned: success
type: str
customMetricUtilizations:
description:
- Configuration parameters of autoscaling based on a custom metric.
@ -549,7 +572,7 @@ def main():
time_window_sec=dict(type='int'),
),
),
cpu_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str'))),
cpu_utilization=dict(type='dict', options=dict(utilization_target=dict(type='str'), predictive_method=dict(default='NONE', type='str'))),
custom_metric_utilizations=dict(
type='list',
elements='dict',
@ -820,10 +843,14 @@ class RegionAutoscalerCpuutilization(object):
self.request = {}
def to_request(self):
return remove_nones_from_dict({u'utilizationTarget': self.request.get('utilization_target')})
return remove_nones_from_dict(
{u'utilizationTarget': self.request.get('utilization_target'), u'predictiveMethod': self.request.get('predictive_method')}
)
def from_response(self):
return remove_nones_from_dict({u'utilizationTarget': self.request.get(u'utilizationTarget')})
return remove_nones_from_dict(
{u'utilizationTarget': self.request.get(u'utilizationTarget'), u'predictiveMethod': self.request.get(u'predictiveMethod')}
)
class RegionAutoscalerCustommetricutilizationsArray(object):

View file

@ -235,6 +235,17 @@ resources:
or until the average utilization reaches the target utilization.
returned: success
type: str
predictiveMethod:
description:
- 'Indicates whether predictive autoscaling based on CPU metric is enabled.
Valid values are: - NONE (default). No predictive method is used.
The autoscaler scales the group to meet current demand based on real-time
metrics.'
- "- OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability
by monitoring daily and weekly load patterns and scaling out ahead
of anticipated demand."
returned: success
type: str
customMetricUtilizations:
description:
- Configuration parameters of autoscaling based on a custom metric.